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Accumulation as a tool towards blending reasoning about quantity 
and rate of change in physics contexts  

Charlotte Zimmerman1 and Suzanne White Brahmia² 
1Cornell University, Ithaca NY, United States cmz42@cornell.edu; ²University of 

Washington, Seattle WA, United States 
The amount, change, rate and accumulation of physical quantities are essential 
features of reasoning with calculus and physics. Experts in physics and mathematics 
use rate of change reasoning throughout their process of developing and making sense 
of graphical models; distinguishing between rate and quantity is an essential part of 
that. We suggest that rate vs time graphs offer an opportunity for direct instruction on 
distinguishing between rate and quantity, as well as blending this reasoning to 
determine an accumulation. Here we share some pilot-tested graphical reasoning 
activities that we have developed based on the ways experts and students reason.   
Keywords: covariation, graphical reasoning, quantity, physics 
INTRODUCTION 
Making sense of quantity, rate of change, and accumulation are central features of 
calculus (Carlson et al., 2002; Samuels, 2022). Research in mathematics education and 
physics education has demonstrated that distinguishing between quantity, rate of 
change, and accumulation is difficult for students (Sealey, 2014; Trowbridge & 
McDermott, 1980; Von Korff & Rebello, 2012; Yu, 2024). Research has also 
demonstrated that physics experts distinguish between rate and quantity in part by 
identifying physically meaningful points in graphical representations and reasoning 
about the rate of change around those points (Zimmerman et al., 2023). One possible 
way that calculus and physics instructors may be able to help their students learn to 
think this way is by using direct instruction of these expert-like behaviours. 

Graphical representations with meaningful accumulated physical quantities 
typically involve a rate of change represented on the vertical axis, and time or position 
on the horizontal axis. In physical contexts, it is also common that the rate of change 
is a quantity in its own right (e.g. speed is the time rate of change of position, the 
accumulated quantity in a graph of speed vs time is a displacement). Reasoning about 
accumulated quantities using graphs of rate vs. time therefore requires students to be 
able to identify the physical quantity represented by the vertical axis as a rate, interpret 
the meaning of its rate of change, and use both pieces of information to determine the 
accumulation as a distinct quantity. Rate vs. time graphs thus provide a rich 
representation that blends several ways of reasoning about quantity and rate of change, 
that are ubiquitous in physics courses.  
STUDENT REASONING AROUND ACCULUMATION TASKS 
The item shown in Figure 1 is one example, featuring a rate (growth speed) vs time 
graph and asking students to reason about an accumulated physical quantity (amount 
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of growth in 1 year). This task is derived from a survey that assesses physics 
quantitative literacy (White Brahmia et al., 2021; Zimmerman et al., 2022). The data 
we share come from a series of 29 individual student interviews conducted as part of 
validating the inventory.  

Students were solicited for interviews from an algebra-based introductory 
physics class at a large U.S. university. The course is typically taken by 3rd and 4th year 
university students studying life science, most of whom have completed at least one 
semester of calculus instruction that includes basic integration. Interviews involved one 
student and one member of the research team; student participants were asked to work 
through the items while talking out loud. Interviews were audio recorded and 
transcribed. Students were offered $15 gift cards as a small thank you for their time. 
We do not claim that these ways of reasoning are representative of all physics students; 
rather, we share this evidence to illustrate the varied mental resources these students 
activated about physical quantities and rates of change at the beginning of an 
introductory physics class after having taken calculus. 

 
Figure 1: An example of an accumulation item. 

Most of students that we interviewed chose answer options (a) or (b). Students 
answers and justifications are shown in Table 1. Students who chose (a) often did so 
either because they conflated the quantity “growth amount” with the quantity “growth 
speed”, or because they examined the average growth speed which is the same for both 
children. Students who chose (b) did so either by noticing that the accumulated quantity 
(how much the children grow) can be found by taking an integral, or by reasoning that 
Alex’s growth speed is larger than Jordan’s the entire time.  

There are multiple interpretations for the students who used an intersection 
approach. One could reason they were distracted by the intersection and viewed the 
vertical axis as representing total growth. However, this student previously articulated 
that they understood the vertical axis represented growth rate. Another interpretation 
is that this student conflated quantity and its rate of change while trying to use them 
together to find the total growth. Students who chose (a) and discussed average rates 
of change represent an opportunity for direct instruction. These students have 
productive quantitative resources around accumulation with linear functions that can 
be built upon, but do not yet have facility with non-linear changing rates of change.  
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We recognize that students who chose (b) and understand the procedure for 

taking an integral may or may not have strong conceptual reasoning around 
accumulation.  We suggest that students who chose (b) and spontaneously chose to 
compare the changing rates of change demonstrate strong conceptual reasoning about 
accumulation for quantities with changing rates of change.  
Answer  
Choice 

Approach Example Quote 

a Intersection “They intersect right here, despite having two different 
curves for their growth. So that means despite their different 
rates of growth at this specific year, they [have] grown the 
same amount.” 

a Average 
Rate of 
Change 

“Since they both have the same growth speed at the end of 
the year, they have grown the same amount? Because... they 
have like the same average speed.” 

b Area Under 
Curve 

“So I’m thinking that it’s like a physics problem where it’s 
like the area underneath the graph. That would mean Alex 
grew more than Jordan.” 

b Relative 
Value of 
Rate of 
Change 

“Alex, their, like, their growth speed is just higher for more 
of the year. So they’re just gonna grow more.” 

Table 1: Common student approaches to the item shown in Figure 1. 

These data suggest that problems that ask students to reason about the 
accumulated quantity represented in rate vs time (or position) graphs may be a fruitful 
place to help them learn to differentiate between quantity, rate, and accumulation and 
to better understand how these three kinds of quantities are related.  
EXAMPLES OF ACCUMULATION ACTIVITIES 
We designed activities in the context of a large-enrollment (N = 323) algebra-based 
Introductory Electricity and Magnetism course to support students learning: (1) to 
distinguish between quantity and rate, (2) to reason about changing-rates-of-change 
rather than an average, and (3) reasoning that blends procedural and conceptual 
competency with rates of change, independent of calculus algorithms. We note that 
deciding whether to treat a physical quantity as a rate, quantity, or accumulation in a 
particular context is one part of “learning to distinguish” between them. To facilitate 
variation between instructors’ instructional preferences, the activities were designed to 
be administered as clicker-questions during lecture or as practice exam questions. We 
also included a small number of these items as exam questions as an early measure of 
whether student reasoning was improving. These items represent our initial pilot into 
whether accumulation-based activities may help students learn to reason this way.  
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An example is shown in Figure 2, in which students compare how much heat is 

transferred across two rods. They are given a graph of P, the rate at which heat is 
transferred, vs t, elapsed time. The rate at which heat is transferred can be thought of 
as the amount of heat that moves from one end of the rod to the other in each time unit. 

 
Figure 2: An example of an in-class accumulation activity using a rate vs time graph. 

The mid-term exam questions (Fig. 3) provide an early measure of how students’ 
reasoning improved. Although they are mathematically analogous items, they are not 
rigorous measures of what students learned in the course. Students likely have more 
facility with some physics contexts (metabolic energy) than others (electric circuits). 
However, these results paint a picture of how challenging, and context dependent, this 
kind of reasoning can be for students in a science course–even for students who have 
completed one or more semesters of calculus. 37% of our students chose the correct 
answer on the first midterm item, and 57% of our students chose the correct answer on 
the second. We note that both current and power were directly taught as rate quantities. 

We interpret these data as an illustration that students require significantly more 
opportunities to practice with accumulation than we were able to offer in our 
preliminary pilot, or than they are getting in their calculus and physics classes alone.  

 
Figure 3: Example exam items from an Introductory to Electricity and Magnetism 
course (N = 323) The left was given on the first midterm, and the right on the second. 

INSTRUCTIONAL IMPLICATIONS 
One benefit of incorporating graphical tasks alongside symbolic ones is that there is a 
high level of conceptual calculus-like reasoning without requiring a high level of 
procedural proficiency. In introductory physics classes, proficiency with symbolic 
reasoning is often not consistent across students. It is also typical in physics for 
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graphical questions to act as practice after symbolic ones, despite research that has 
demonstrated the benefit of  a multiple representations approach (Kohl & Finkelstein, 
2008). By offering these activities alongside symbolic problems students were 
grappling with, we leveraged graphical reasoning from the very beginning of the unit.   

Our study suggests that university students who have completed calculus and 
introductory physics are not likely to have strong proficiency with the foundational 
mathematical ideas of quantity, rates and accumulation. We suggest that these ideas 
are complex and take time to learn; likely more than any one term university course 
can manage. Incorporating instruction about accumulation in graphical contexts in 
calculus courses and across math-based STEM disciplines, that has a common focus 
and common language, can help students when using calculus to model physical 
phenomena. We present this work to help foster rich collaboration across disciplines.  
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An Analysis of Covariational Reasoning for the Conceptual Introduction of 

Derivative in US and Chinese Calculus Textbooks 

Yixiong Chen 

San Diego State University, San Diego, CA, USA; ychen31@sdsu.edu 

Content analysis methods were used to examine the development of covariational 

reasoning levels in four calculus textbooks. One calculus textbook from each category 

was investigated: US college, US high school, Chinese college, and Chinese high 

school. The sections that conceptually introduce derivatives were selected for analysis. 

Conceptual analysis revealed that although none of the textbooks in this study have a 

coherent, systematic development of the pedagogy in covariational reasoning, the 

Chinese high school text provides the most development at intermediate levels. The 

relational analysis revealed that the US college text provides an abundant scaffolding 

for transitioning between the average and instantaneous rate of change, while all 

others lack transitions among passages that stimulate covariational reasoning. 

Keywords: Derivative, Covariational Reasoning, Content Analysis. 

INTRODUCTION AND REVIEW 

Covariational reasoning, a developmental capacity to coordinate two covarying 

quantities, is essential in understanding and modeling dynamic events (Carlson et al., 

2002; Thompson & Carlson, 2017). It is indispensable in physics (Sokolowski, 2021), 

chemistry (Rodriguez et al., 2019), biology (Bennoun et al., 2023), earth science 

(Gonzalez, 2022), engineering (Nunez et al., 2021), and economics (Mkhatshwa, 

2024). Moreover, the developmental process of covariational reasoning capacity 

should not be viewed as an intermediate step that can be discarded once students 

recognize that the concept of the derivative is the instantaneous rate of change; as 

Bennoun et al. (2023) showed, the modeling of a dynamic event in biology can be more 

productive by going thoroughly through some “change equations” without jumping 

directly to the notion of derivative. Thompson and Carlson (2017) stated, "the 

meanings of calculus that are grounded in covariational reasoning also fit precisely 

with the ways of thinking that science educators complain is lacking in their students' 

mathematics" (p. 453). For calculus teaching, the challenge is how to emphasize 

covariational reasoning in the calculus curriculum (Thompson & Carlson, 2017). 

Mathematics textbooks can heavily influence students’ learning outcomes by shaping 

students’ opportunities to learn and influencing the quality of instruction (Carroll, 

1963). Recent research and analysis of calculus textbooks and curriculum (e.g., 

Tallman et al., 2021; Toh, 2021) found that in general, "students are rarely required to 

interpret functions or situations in terms of covariational reasoning such as 

coordinating changes in output for successive equal changes in input" (Tallman et al., 

2021, p. 582), and syllabus and the textbooks only discuss the shape of the graph, 

without mentioning how the shape of the graph is related to the change of one variable 

when the other changes (Toh, 2022). Understanding how current calculus textbooks 
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guide students in developing covariational thinking capabilities can benefit many 

STEM education stakeholders.  

The research question of this study is: How is covariational reasoning developed in 

four calculus textbooks from the reader-center’s perspective, one each in the following 

categories US college, US high school, China college, and China high school, and what 

are the similarities and differences? 

THEORETICAL FRAMEWORKS 

This study rests upon two frameworks. The first is the five-level framework by Carlson 

et al. (2001) and its updated version (Thompson & Carlson, 2017), which is used as the 

base for the covariational reasoning developmental process. The other one is the 

framework of reader-oriented theory (Weinberg & Wiesner, 2011), which informs the 

research design in terms of coder selection,  coding rubric development, and coder 

training. The content analysis of the textbooks in this study consisted of conceptual and 

relational analysis. Conceptual analysis identified the occurrence of texts that explicitly 

promote each of the five levels of covariational reasoning. Relational analysis 

identified the relationship among the occurrences of these passages. 

METHODOLOGY 

The study underwent three phases: textbook and section selection, conceptual analysis, 

and relational analysis. In the first phase, I selected four calculus textbooks, shown in 

Table 1, all widely used in their categories. I identified the sections that conceptually 

introduced derivatives in each of the four textbooks. The derivative is the topic all 

calculus textbooks cover, and all five levels of covariational reasoning can be used to 

build up the mental image of changes. In the second phase, I worked with two coders 

who independently conducted a conceptual analysis of the selected sections. Both 

coders were fluent in both Chinese and English, had experience in both high school 

and college teaching in the US, were educated in both China and the US, and were 

trained by the author to conduct conceptual analysis for covariational reasoning (Chen, 

2023). The process of conceptual analysis went through several iterations to ensure the 

result was independent and reliable (Chen, 2023). Each sentence that promotes a 

certain level of covariational thinking was identified, named L1 (covariation of 

variables is explicitly written), L2 (the direction of the change of one variable is 

explicitly written with the change of another variable), L3 (the amount of the change 

of one variable is explicitly written with the change of another variable), L4 (the 

average rate of the change of one variable is explicitly written with the change of 

another variable), and L5 (the instantaneous rate of change of one variable is explicitly 

written with the instantaneous change of another variable). The relational analysis in 

the third phase determines how L1 through L5 are related. Three levels of connection 

were identified: none, simple, and strong. Simple connections are connections between 

concepts, such as the use of the average rate of change after it is defined is a simple 

connection with the original definition. A strong connection places the simple 

connection within the same context, such as the same example or exercise.   
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RESEARCH FINDINGS 

Table 1 shows an overview of the sections from all four calculus textbooks.  

Category US College US HS China College China HS 

Textbook Stewart (2016) Finney et al. (2016)  Higher Mathematics (2014) Electives 2-2 (2012) 

Section Pages 105-117 87-96 73-84 1-11 

Main text  118  92  113  77 

Exercises 61  71  20  12  

Table 1: Overview of sections in this study's four selected calculus textbooks  

After each occurrence of the sentence that promotes various levels of covariational 

reasoning (T1 to T5) was identified, the progress of the levels through the whole section 

was investigated. Table 2 shows the occurrence and development of passages that 

explicitly promote covariational reasoning in the sections that conceptually introduce 

derivatives in all four calculus textbooks in this study.  

 College High School 

The 

US 

  

China 

  

Table 2: The occurrence and the development of passages that explicitly promote 

covariational reasoning in the four calculus textbooks in this study  

All four textbooks have some occurrence of L1 and L5. Second, what happens between 

the starting and ending points differs from textbook to textbook. The Chinese college 

calculus textbook had no stimulants to covariational thinking in between, while the 

Chinese high school calculus textbook had the most elaborate and robust buildup of L2 

and L3 before it got to L5. Third, neither Chinese textbook had developed L4 and L5 
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in the main expository text. The L5 only exists in the exercise sections of both Chinese 

textbooks. Fourth, both college calculus textbooks develop the covariational reasoning 

level mainly in one direction, i.e., the level goes up as the passage progresses. On the 

contrary, in the main expository section, both high school calculus textbooks developed 

the covariational levels in a circulated way. Fifth, both US calculus textbooks are heavy 

in L4 and L5. Sixth, only the US college textbook makes meaningful and substantial 

efforts regarding connections among concepts. However, scaffolding only happens 

among L4s and L5s. No meaningful transition, among other levels of covariational 

thinking, was found in the sections selected for this study. Sixth, one unique feature of 

the Chinese high school text is its substantial effort in building L2 and L3.  

CONCLUSION 

Calculus education should emphasize the development of covariational reasoning, 

which is indispensable in many disciplines (Sokolowski, 2021; Rodriguez et al., 2019; 

Bennoun et al., 2023; Gonzalez, 2022; Nunez et al., 2021; Mkhatshwa, 2024). In 

addition to serving as a scaffold for developing derivative concepts, the intermediate 

level of covariational reasoning, the direction, magnitude, and the average rate of 

change are essential to mathematizing real-world dynamic events in writing the 

“change equations.” In analyzing selected calculus textbooks in four categories, it was 

found that all four calculus textbooks did not make the developmental process of 

covariational reasoning explicit. This study suggests that the developmental effort in 

covariational reasoning pedagogy is one possible area for future improvement in 

calculus textbooks, whereby authors can explicitly consider scaffolding and 

advancement in students' covariation reasoning capacity.  
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An unexpected construct toward the fundamental theorem 

Gilat Falach1, Anatoli Kouropatov², and Tommy Dreyfus1 

1Tel Aviv University, Israel gilatf@gmail.com; 

 ²Levinksy-Wingate Academic College, Israel anatoliko@gmail.com 

Using a graphically based activity situated in the extra-mathematical context of water 

flowing into a pool, high school students were guided to construct the accumulation 

function for different flow rates. The analysis of the knowledge construction processes, 

using the theoretical framework of Abstraction in Context, revealed an unexpected 

construct: some students identified the flow rate as the derivative of the accumulation 

function. The analysis highlights the role of the context and indicates elements of 

knowledge that may be crucial when introducing integration. 

Keywords: Integration, accumulative thinking, construction of knowledge, unexpected 

construct, Fundamental Theorem of Calculus. 

INTRODUCTION 

Most high school calculus students who will study calculus at the tertiary level will do 

so to use it in their natural or social sciences major. Experiencing the fundamental 

concepts of calculus: derivatives, integrals, and the fundamental theorem (FTC) in 

suitable extra-mathematical contexts (EMCs) already at high school, may support 

students’ conceptualization of these concepts as well as their motivation to learn 

calculus. In this paper, we present evidence for the support of conceptualization by 

using EMCs (Gravemeijer and Doorman, 1999; Reinke, 2020).  

We use a learning activity which aims to serve as an introduction to integration via 

accumulation in an EMC. We analyse students’ learning process using Abstraction in 

Context as theoretical framework. Our results show that some students make use of the 

EMC to conceptualize even beyond what was intended by the design of the activity.  

THE LEARNING ACTIVITY 

The learning activity is graphically based and designed to offer students an opportunity 

to develop Accumulative Thinking (Falach et al., 2025) in the context of water flowing 

into a pool. We define Accumulative Thinking as awareness of and ways of reasoning 

with the nature and the multiplicative structure of the "bits" that accumulate as well as 

with the dynamism of the process of accumulation. 

We adopted accumulation from rate (Jones & Ely, 2022) as didactical basis for learning 

about accumulation. The activity has three parts, each using a graphically presented 

rate of flow of water into the pool: (1) constant (2) constant in segments and (3) linear 

and decreasing. The learning activity typically carried out in two 70-minute sessions. 

In each part, students construct a function representing accumulated water over time 

by analyzing the accumulating “bits” as products of time × rate, examining how the 

rate affects them, and summing these bits to form the accumulation function. 
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The third part of the learning activity is central to this paper. In this part, the students 

are working with a positive linear decreasing rate of water flow (Figure 1).  

 

Figure 1: Rate of water flow into the pool in part 3 of the activity 

Three pairs of grade 11 students were observed and audio-recorded during the activity. 

These students had learned about differentiation in grade 10 but had not yet been taught 

integration. Their work has been transcribed and analysed (Falach et al., 2025). 

THEORETICAL FRAMEWORK  

We adopted Abstraction in Context (Dreyfus et al., 2015) as theoretical framework. It 

provides analytic tools to study how students construct mathematical knowledge, 

through an a priori analysis of the activity, yielding a structured list of intended 

knowledge elements; and an a posteriori analysis that reveals both intended and 

unexpected constructs. To describe students’ epistemic actions during abstraction, we 

used the RBC model (Recognizing, Building-with, Constructing), which characterizes 

abstraction as a process in which students identify relevant prior knowledge, use it in 

reasoning, and reorganize it to form new constructs. 

The learning activity leads the students to draw the accumulation function by 

considering the bits that accumulate, the way they accumulate and the graph of the 

accumulation function. For the constant (part 1) and constant in segments (part 2) rates 

of flow, the students can calculate the accumulated amounts in consecutive time 

intervals by multiplying the rate by the time duration. In part 3, this is not applicable 

since the rate is linear and decreasing rather than constant. The area under the graph as  

representative of the accumulated amount can bypass this difficulty; therefore, students 

are led to construct this knowledge prior to the third part of he activity.  

The design avoided referring to differentiation to keep students focus on accumulation 

and its features. Nevertheless, some students recognized that the rate graph represents 

the derivative of the accumulation function. The following sections describe the 

process that may have led to this generalization. 

THE CASE OF ANA AND ZOE 

When considering the constant water flow rate in part 1 of the activity, Ana said “the 

filling rate will always be 30 litres per minute”; she recognized that the rate would 
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impact the accumulation function in a predictable manner, thus laying a foundation for 

her understanding of how rate of change and accumulation are related. When asked to 

compute and graph the amounts of water accumulated in successive time intervals, Ana 

noted that the slope of the accumulation function reflects this constant rate and checked 

her observation by computing the algebraic expression 𝑦 = 30𝑡 by using two points. 

She concluded “the slope is constant, and it equals 30 because that's the rate… [the 

accumulation function] is a linear function starting at 0, with a slope of 30”.  

Next, when presented with a GeoGebra animation, in which a constant graph represents 

the rate of water flow as a function of time and the rectangular area under the graph is 

being filled in from the starting time and grows continuously to the end time, Ana 

reinforced her idea that the rate of flow was tied to the accumulation function. Ana 

realized that the product of rate and time interval gives the amount added and used this 

knowledge to explain why the area of a rectangular bit represents the amount of water 

added, a construct she used in the following tasks.  

When dealing with the case of a rate that is constant in segments (part 2), Ana expressed 

the connection between the flow rate and the slope: " …we talked about it earlier that 

[the flow rate] is the slope, the litres per minute represent the slope [of the accumulation 

function]". To draw the accumulation function, Ana finds the area under the graph by 

multiplying the rate with the length of the time interval in each segment and summing 

them up to find points on the graph of the accumulation function. 

Finally, when dealing with the case of a positive, linear, decreasing rate in part 3 of the 

activity (Figure 1), Zoe suggested using the area under the graph. However, Ana 

answered: "if this [graph] represents the slopes, then the derivative also represents the 

slope at any point". She graphed the accumulation function by plotting 3 points and 

connecting them by a concave down curve. She explained the graph by writing:  

If I know that this [rate] graph describes the slope at that point in the graph of the 

accumulation function, then I can determine that it is its derivative and then go from the 

filling rate graph equation, which is the derivative of the original function that is the 

accumulation, investigate it and draw it accordingly. 

Here Ana expressed an unexpected construct, namely that the rate is the derivative of 

the accumulation function and used it to draw the graph of the accumulation function.  

THE CASE OF ROY AND DON 

When dealing with the constant flow rate of 30 litres per minute, Roy wrote: "The 

amount of water accumulated in the pool increases at the constant rate of 30 litres per 

hour, so we get a straight line of 𝑦 = 30𝑡" and verbally added "as Mike, likes to say" 

(Mike is Roy’s physics teacher). Roy related the situation to his physics studies. He 

sketched  the graph 𝑦 = 30𝑡 when asked to draw the accumulation function. It seems 

that Roy’s conclusion, that the given flow rate is the slope of the accumulation function, 

is supported by his physics studies.  
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While working on the tasks related to the GeoGebra animation, Roy explained: "[the 

animation] gives a rectangular shape which has an area that represents the connection 

between the flow rate and the time of filling, whose product gives the added amount". 

He expressed that the area represents the amount, a construct he used in later tasks.    

When drawing the accumulation function for the flow rate that is constant in segments, 

Roy calculated the added amounts as product of rate and time interval in each segment. 

When asked about the connection between the given rate graph and the accumulation 

function, Roy explained:  "The graph of the flow rate represents the slope of the 

accumulation function graph at each 𝑡, that is, the graph of the derivative";  here he 

expressed the unexpected construct that the flow rate graph is the derivative of the 

accumulation function. He then elaborated: "it reminded me of kinematics… say 

someone has a velocity-time graph, so it is also segmented… say they tell you what 

the displacement is, so I build a graph accordingly. It’s like algebraic expressions…". 

When discussing the positive, linear, decreasing rate graph, Roy used the analogy from 

kinematics. When asked to draw the accumulation function, he concluded that it is a 

parabola because the given graph is the derivative of the accumulation function graph.  

DISCUSSION 

Ana and Roy constructed the unexpected construct, namely that the given rate graph is 

the derivative of the accumulation function, while their partners apparently did not. In 

part 1, both Ana and Roy determined that the accumulation function is 𝑦 = 30𝑡. Ana 

reached this conclusion analytically, finding the algebraic representation of the 

function using two points. Roy reached it by analogy from contexts in his physics 

studies. When determining that the accumulation function is 𝑦 = 30𝑡, both Roy and 

Ana claimed that the given rate is the slope of the accumulation function. This 

observation might have transformed their thinking from describing the process 

qualitatively to reasoning quantitatively about the graphical representation. 

Roy first expressed that the given rate is the derivative of the accumulation function in 

part 2, when reminded of a similar question in kinematics. He again expressed it in part 

3, but did not make use of it to construct the accumulation function.  

Ana first expressed the unexpected construct in part 3 and promptly made use of it to 

build the accumulation function. The construct may have emerged then for Ana 

because the strategy of multiplying the rate by the time duration did not work; looking 

for a different strategy to find the accumulation function, helped her connect slope 

(which she had noticed earlier) to derivative. 

Both, Ana and Roy expressed in part 1 that the slope of the accumulation function was 

a straight line whose slope equals the given constant rate value. In part 2, this was 

reinforced. In part 3, they needed a different strategy. Ana achieved the strategy via the 

unexpected construct based on her previous knowledge about the derivative being the 

slope at every point. For Roy, it was anchored in other contexts from physics.  
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Throughout his work, Roy uses analogies from physics, which helped him to solve the 

tasks. The pool context may have supported meaningful reasoning and the application 

of ideas across contexts, an example of how real-world situations can foster context-

dependent strategies and generalization (Gravemeijer & Doorman, 1999) and possibly 

help overcome known challenges in transferring mathematical knowledge (Jones, 

2015). We cannot confidently attribute Roy’s generalization solely to the effect of the 

pool context, since we know that he encountered similar problems in his physics class. 

However, Ana and Zoe, who did not study physics, also arrived at the same 

generalization. This may suggest that the pool context played a role in supporting such 

reasoning, even in the absence of prior exposure to analogous problems.  In conclusion, 

in spite of some differences between them, Ana and Roy both made essential use of 

one (Ana) or several (Roy) EMCs to go beyond the intended knowledge construction 

process; in the first sequence of activities toward learning integration, they constructed 

the connection that the accumulation function of a given a rate of change function has 

the property that its derivative equals the given rate of change function -  essentially 

the fundamental theorem of calculus. 
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Understanding calculus concepts, especially integrals, is critical in physical chemistry 
(PC) and narrower in thermodynamics, a field where these concepts pose significant 
challenges to students. This paper investigates the role of ‘basic mental models’ 
(BMMs) of the integral in supporting comprehension of core concepts in 
thermodynamics. Through an analysis of textbook content, we identified how the 
different BMMs are needed within thermodynamics. Results reveal that nearly each 
BMM of the integral is relevant for explaining certain thermodynamic concepts. These 
findings highlight the value of the mathematical-didactical concept of BMMs and 
emphasize its importance for PC lecturers in effectively conveying complex concepts 
and enhancing student understanding. 
Keywords: physical chemistry, thermodynamics, integral, basic mental model. 
INTRODUCTION 
Physical Chemistry (short ‘PC’), particularly within the central domain of 
thermodynamics, constitutes a fundamental element of undergraduate chemistry 
curricula. They are often regarded as one of the most challenging aspects of a typical 
chemistry degree program. They are based not only on physics but also on 
mathematics, especially calculus (David, 1995). A study conducted with Turkish 
students identified the primary challenges perceived in PC courses (related to the 
course itself), highlighting the ‘abstract concepts’, followed by a lack of ‘deep 
understanding’ and ‘too much mathematics’, among others (Sözbilir, 2004). Since 
calculus is a central part of thermodynamics, one might think that it is important to 
improve students' mathematical skills. And indeed, there is evidence that higher math 
skills are correlated with higher performance in PC in general (Hahn & Polik, 2004). 
Therefore, it makes sense to use the knowledge from mathematics didactics to support 
students in gaining a ‘deeper understanding’ in the main part of undergraduate PC 
lectures, namely thermodynamics. 
In this article we demonstrate the use of the so-called Grundvorstellungen (‘basic 
mental models’, abbreviated as BMM), which have emerged from a decades-long 
discussion about what learners should understand about mathematical concepts 
(Greefrath et al., 2021). Here we focus on the mathematical concept of the integral, 
which plays a crucial role not only in calculus and thus in thermodynamics, but also in 
the STEM field in general. To this end, the subsequent discourse is structured 
according to the following research question: To what extent can concepts and terms 
of thermodynamics be interpreted with BMMs of the integral? 
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THEORETICAL BACKGROUND 
Basic mental models of mathematical concepts 
The BMMs of a mathematical concept describe the content-related interpretations that 
give meaning to that very concept (vom Hofe & Blum, 2016). A mathematical concept 
can have several different BMMs and together they “are prerequisites for dealing with 
[that] mathematical concept in an insightful way” (Greefrath et al., 2021, p. 650). The 
concept of BMMs allows both a normative and a descriptive work (vom Hofe & Blum, 
2016). On the one hand, the normative BMMs act as ‘learning objectives’ and are 
determined by a didactic analysis of the mathematical concept. On the other hand, the 
descriptive work makes it possible to identify learners’ individual BMMs which “are 
the specific manifestations of normative BMMs in a person” (Greefrath et al., 2021, 
p. 650). These can be derived from the learners’ oral or written statements. They serve 
to indicate which of the individual BMMs need to be further developed in order to best 
correspond to the normative BMMs - and thus a comprehensive understanding of the 
mathematical concept. 
Basic mental models of the integral 
Here we focus on the mathematical concept of the (definite) integral, which plays a key 
role in thermodynamics. Since the mediation and teaching of ‘abstract concepts’ and 
the acquisition of a ‘deeper understanding’ are the core issues, this article presents the 
normative BMMs of the integral (see table 1), which serve as an adequate interpretation 
of the mathematical concept (vom Hofe & Blum, 2016).  

BMM of Description 
area The definite integral is interpreted as the oriented area enclosed by 

the function’s graph and the 𝑥𝑥-axis. Areas below the 𝑥𝑥-axis are 
counted as negative. 

(re) 
construction 

The integral represents either the total variation of a quantity (given 
its rate of change) or serves to determine an antiderivative. 
"Construction" derives a new function from known values, while 
"reconstruction" determines existing relationships from rates of 
change. 

accumulation The integral is viewed as the limit of a sum of partial products, 
focusing on the accumulation process before reaching the limit. 
Geometrically, this corresponds to summing the areas of rectangles 
with infinitesimally small width. 

average The integral is interpreted as the average function value over an 
interval. The mean value theorem for Integrals ensures that there 
exists a point 𝜉𝜉 where this average value is attained. Geometrically, 
this corresponds to a rectangle with the same area as the integral. 

Table 1: Normative BMMs of the integral as suggested by Greefrath et al. (2021). 
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METHODOLOGY 
To answer the research question, all chapters of the (standard) textbook on PC by 
Atkins (2017) dealing with thermodynamics, namely Focus 1-5 and 13,  were 
qualitatively analysed based on the structured qualitative content analysis according to 
Mayring (2022). Other chapters were not examined. All authors, coming from the 
complementary fields’ didactics of mathematics and chemistry, analysed the chapters 
by looking for formulas and diagrams in which integrals appear or play an important 
role. These occurrences were then coded by using the normative BMMs of the integral 
(see table 1) as a coding scheme focussing on whether formulas or diagrams in these 
chapters can be interpreted using at least one BMM. Therefore, a single occurrence can 
be coded multiple times. All occurrences coded with the same BMM were then sorted 
in terms of thermodynamic concepts and terms.  
RESULTS  
The results are presented separately for each BMM, in that sense that first an example 
is presented to explain the BMM coded and secondly the thermodynamic concepts and 
terms are named. The classical BMM of area is needed, for example, in the canonical 
context of the Carnot cycle. In the typical representation of the Carnot cycle in the 
pressure-volume (PV) diagram, two adiabats and two isotherms enclose a curvilinear 
bounded area, the area of which then gives the work done by the Carnot engine. This 
area can then be determined using integrals, since these are ‘measuring’ (oriented) 
areas. The same also applies to the representation in the temperature-entropy diagram, 
where the area is a rectangle, whose area indicates the amount of heat transferred. 
Altogether, the BMM of area is essential for all thermodynamic cycles and (some) 
other representations of work in PV diagrams (e.g. expansion work at constant 
pressure). When depicting these in PV diagrams or temperature-entropy diagrams, it is 
important to understand that the enclosed area denotes the work, which is represented 
by the (definite) integral. 
The second example, for needing the BMM of (re)construction, can be found in the 
temperature dependence of the reaction enthalpy. If the reaction enthalpy is given at a 
temperature 𝑇𝑇1, the reaction enthalpy at a second temperature 𝑇𝑇2 can be determined (or 
rather ‘constructed’) using the integral of the heat capacity over the temperature 
differences (see ‘Kichhoff’s law’). The integral can therefore be interpreted as the total 
variation of the reaction enthalpy over the interval of the temperature difference 
determined from the rate of change, which is given by the heat capacity. Generalized, 
the BMM of (re)construction is required whenever a state function is described by other 
state functions in the form of integrals (e.g. Gibbs energy with variation of pressure). 
The integrand may only depend on one state function that ultimately specifies the rate 
of change of the other state function, which in turn represents a total variation. 
The BMM of accumulation is required when determining the pressure-volume (PV) 
work at non-constant pressure. Consider a gas in a piston doing PV work and the 
external pressure is not constant. For very small changes in volume, the pressure 
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becomes almost constant. This is the essential core idea that leads to a product sum. 
Because when the work is accumulated, which is the product of pressure and volume, 
by all these small changes, the total PV work (𝑤𝑤) is determined. This can be calculated 
as 𝑤𝑤 = ∫ 𝑝𝑝 𝑑𝑑𝑑𝑑𝑉𝑉𝑓𝑓

𝑉𝑉𝑖𝑖
 where 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑓𝑓 are the volumes at the initial and final points, 

respectively, and 𝑝𝑝 is the external pressure. This is also generalized in the functional 
relationships described for state functions as on the BMM of (re)reconstruction. This 
is because it can be interpreted as starting with only small changes and accumulating 
them. And making the changes smaller and smaller, the integrand becomes 
approximately constant. 
Finally, the BMM of the average only (!) appears in the van der Waals equation for 
real gases. When isotherms of the van der Waals equation are plotted on a PV diagram, 
they deviate from the empirical values in a certain interval below the critical 
temperature; the so-called van der Waals loops. Therefore, these loops “are replaced 
by horizontal lines drawn so the loops define equal areas above and below the lines: 
this procedure is called the Maxwell construction” (Atkins, 2017, p. 24). The direction 
of thought here is therefore from balancing the areas to a suitable ‘average function 
value’, which can then be determined by using the integral. In contrast, the formulation 
of the BMM of average is from the integral to the average function value. Nevertheless, 
the focus is always on the average function value and its connection to the integral, 
where the former can be interpreted as the saturation vapour pressure in the van der 
Waals equation. No further examples for the BMM of average have been found.  
DISCUSSION  
A first aspect of the research question can be answered to the effect that each of the 
four BMMs of the integral is needed in at least one thermodynamic example. A more 
comprehensive answer is that the general thermodynamic concepts of thermodynamic 
cycles, representation of work and the functional relationships between state functions 
can be interpreted with three BMMs of the integral (area, (re)construction and 
accumulation). There is no general concept which can be interpreted with the BMM of 
average, as this is the only BMM with only one occurrence. Since this is a textbook 
analysis, no data from learners can be analysed and thus only “normative work” can be 
done. However, this was a deliberate choice, as the content of the research question 
focusses on (normative given) thermodynamic concepts and terms and not on 
individual persons.  
Finally, it should be noted that these results are exclusively of a subject-matter didactic 
nature and require evidence-based research. For this purpose, it is necessary to collect 
data from students of thermodynamics. This has recently been done with the test 
instrument of Greefrath et al. (2021) and will be analyzed in another article. A 
translation of the instrument can be found at Bhatt et al. (2025). 
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CONCLUSION 
For three of the four BMMs (area, (re)construction and accumulation), we were able 
to identify broader concepts and terms in the field of thermodynamics for which the 
BMMs of the integral promote with a better understanding. Our results highlight that 
the BMMs of the integral must not only be considered individually, but that different 
perspectives on the (same) integral must be emphasized in order to deal with integrals 
appropriately depending on the context in thermodynamic (cf. Greefrath et al., 2021). 
For example, in the context of describing state functions with another, on the one hand 
the ‘motivation’ for using the integral is given (BMM of accumulation), and on the 
other hand the functional relationships between the state functions are brought into 
focus (BMM of (re)construction). Therefore, various perspectives are necessary for 
learners to develop a deeper understanding. It is precisely for this reason that the 
mathematical-didactics concept of BMMs of the integral could help lecturers to 
adequately explain the thermodynamic concepts and terms described above. We would 
even go so far as to say that the concept of BMMs of the integral could be considered 
- even if only intuitively - as part of a PC lecturer's pedagogical content knowledge. 
The analysis shows that different approaches to an integral as described by the BMMs 
can be theoretical fruitful in the learning process. 
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A focus on quantity in calculus instruction can enrich students’ understanding of what 

they are doing, and why they are doing it. To help prepare calculus students for future 

learning in a physics course, we present an evidentiary argument that a Riemann sum 

representation of integration with quantities is important for quantifying in physics. 

This paper presents two conservation laws encountered in a physics course through 

the lens of the Fundamental Theorem of Calculus as a potential bridge between the 

calculus that students learn, and important physical contexts in which it is used.  

 

Keywords: calculus, physics, fundamental theorem, quantity, infinitesimal. 

INTRODUCTION 

Physics is the science of change, and calculus is its language. Most physics and 

engineering majors are required to complete calculus and calculus-based introductory 

physics courses in their first year of study – ideally preparing them to use calculus in 

physically significant contexts. Calculus helps guide modelling in physics; it is 

essential to describing how physical quantities are related to each other, and for 

creating a structure for new ones to emerge. While many students master procedures 

in their calculus courses, research shows that it is not unusual for them to view the 

mathematics in mathematics courses as distinct from physics (Bajracharya, Sealey and 

Thompson, 2023). This paper argues for an agreed-upon objective for calculus learning 

that students understand why they do what they do in a calculus course, as well as how 

to do it. The physical world creates a need for the tools that calculus provides. This 

need is an opportunity for learning, as seen through the lens of Harel’s (2008) necessity 

principle -- students must have an intellectual need for a topic to be able to learn it. 

In addition to quantities playing an important role in physics, the quantities of calculus 

mean more in calculus learning than simply being the objects of procedures. 

Researchers argue that reasoning with an explicit focus on mathematical quantities 

facilitates students’ learning of calculus. For example, the differential dx in an 

indefinite integral is seen by many as a cue to the variable of integration. Operationally, 

there is nothing wrong with that interpretation, it helps you efficiently get an answer, 

but it reveals essentially nothing about why you would want to perform the integral in 

the first place. Many authors argue for an infinitesimal interpretation of dx as a 

quantity, because it facilitates visualizing a tiny amount of something, which is 

valuable in making meaning of the ratio and products involving dx (Thompson, 2011, 

Dray, 2016, Oehrtman and Simmons, 2023, Ely and Jones, 2023). 

Ratio quantities, product quantities, rates, intervals, accumulation and change are 

mathematical quantities around which the ideas of calculus are formed. Student 
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conceptualization of these quantities, and how derivatives and integrals emerge from 

their combination, is at the heart of understanding why one does calculus in the 

sciences, and not just how to do it. Conceptualizing the unit as part of quantity has been 

shown to be important for students in mathematics courses. Thompson (2011) 

emphasizes the importance of the unit as part of the quantity itself, e.g. a speed v= 10 

m/s. In one study in determining the areas and volumes of shapes, Dorko and Speer 

(2015) observed that calculus students who wrote correct units could explain 

dimensions of planar figures and solids, and connect this knowledge to the shapes’ 

units. In contrast, students who struggled with units also struggled with dimensionality. 

This brief paper narrows the calculus focus to the evaluation theorem of the 

fundamental theorem of calculus (FTC) 𝐹(𝑎) − 𝐹(𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, and the 

mathematical quantities it combines. It highlights the generative richness of the FTC 

in the context of two foundational laws of physics – the laws of conservation of 

energy, and the conservation of momentum. The paper concludes, that through 

coordination, the two disciplines can help students’ conceptual gap narrow.  

BACKROUND 

Quantification and symbolizing in physics 

Quantification involves generating physical quantities as useful and productive objects 

for making sense of a situation. Consider a sailboat moving across water. What 

measurable quantities can help describe the motion? What arithmetic makes sense in 

constructing rates? What are their units? White Brahmia (2019) argues that 

quantification is at the root of modelling on physics, emphasizing the importance of 

quantity and its rate of change. Many physics quantities are vector quantities, and 

signed scalars, presenting an additional challenge for new learners. Many quantities 

emerge from multiplying and dividing other quantities (e.g., momentum = mass x 

velocity, density=mass/volume). Procedurally, the arithmetic involved in creating new 

quantities is not a challenge for most students, however understanding why the 

arithmetic makes sense can pose a significant challenge (Thompson, 2011).  

Physics students struggle with symbolizing quantities and operations (Von Korff and 

Rebello, 2012). Given the challenges of quantification and symbolizing in introductory 

physics, students must have a solid understanding of mathematical quantities and their 

meanings before they blend them with the many new symbols they will encounter in a 

physics course. For example, Gauss’s law combines mathematical quantities, 

symbolizing and both vector and scalar physical quantities: ∯ 𝑬 ∙ 𝑑𝑨 =
𝑄

𝜀𝑜𝑆
  

Reliable resources and difficulties applying calculus reasoning in physics  

Conceptualizing the summing up of quantities, as exemplified in the Riemann sum, is 

productive for many students (Meredith and Margonelle, 2008, Von Korff and Rebello, 

2012, Sealey, 2014, Ely and Jones, 2023). However, students often struggle with 

understanding physical quantities that approach zero. Visualizing what happens to the 
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physical quantity represented by the infinitesimal dx in a definite integral in the limit 

that it goes to zero is difficult. Where does it go? What are you summing up if you’re 

multiplying by zero? Research suggests that physics students are more successful when 

reasoning about summing finite infinitesimals, as this approach helps make the abstract 

concept of limits more accessible and intuitive. (Meredith and Margonelle, 2008, Von 

Korff and Rebello, 2012, Oehrtman and Simmons, 2023) 

Interpretation of the FTC through mathematics quantities 

Mathematics education researchers present a framing of the FTC as a relationship 

between key mathematical quantities of change, rate and accumulation (Thompson, 

1994, Samuels, 2022), see Table 1(a). 

 

Physics 

quantity 

𝑓(𝑏)
− 𝑓(𝑎) 

= 
∫ 𝑑𝑓

𝑥=𝑏

𝑥=𝑎

 
= 

∫
𝑑𝑓

𝑑𝑥
𝑑𝑥

𝑏

𝑎

 
= 

∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎

 

 Total 

change 

(accumulati

on) 

 Infinite 

sum of 

small 

change 

 Infinite sum of 

dep. variable 

change for each 

interval   interval  

 Infinite sum 

of rate  

interval 

impulse 𝑝(𝑡2)
− 𝑝(𝑡1) 

= 
∫ 𝑑𝑝

𝑡=𝑡2

𝑡=𝑡1

 
 

∫
𝑑𝑝

𝑑𝑡
𝑑𝑡

𝑡2

𝑡1

 
 

∫ 𝐹(𝑡)𝑑𝑡
𝑡2

𝑡1

 

 Change in 

momentum 

 Same as 

above 

 Same as above  Infinite sum 

of force  

time interval 

work done 

on system 
𝑈(𝑥2)
− 𝑈(𝑥1) 

= 
∫ 𝑑𝑈

𝑥=𝑥2

𝑥=𝑥1

 
 

∫
𝑑𝑈

𝑑𝑥
𝑑𝑥

𝑥2

𝑥1

 
 

∫ 𝐹(𝑥)𝑑𝑥
𝑥2

𝑥1

 

 Change in 

potential 

energy 

 Same as 

above 

 Same as above  Infinite sum 

of force  

displacement 

Table 1: (a) Shaded region represents mathematical quantities in the FTC (Samuels, 

2022) (b) Unshaded region is an FTC representation of conservation laws. 

The term change here is used to refer uniquely to the change in the dependent variable. 

While both ∆y and ∆x are referred to as "change" in mathematics, in the context of 

scientific measurement they represent different types of change. One is manipulated, 

and the other is a response, even though they covary. The right –hand side is a sum of 

infinitesimally small products. Each product has a specific value of the rate as one 

factor, and infinitesimally small interval of the independent variable as the other. The 

key mathematical quantities are the change, the infinitesimal products, and the 

accumulation that is found through summing up these tiny products. 
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EXAMPLES OF FTC IN PHYSICS: CONSERVATION LAWS 

The conservation laws are introduced in students’ first physics course, mechanics.  The 

conservation of total mechanical energy and the total momentum of a system form the 

foundation of mechanics. The Fundamental Theorem of Calculus (FTC) provides a 

framework for representing these conservation laws, as represented in Table 1 (b).  

The total energy of a system changes when an external object exerts a force on the 

system as its position changes along the direction of the force. The dot product of the 

two vector quantities (force and displacement) in the integral result in a scalar change 

in energy that is exactly equal to the cumulative effect of the force acting over a 

displacement (position interval). This accumulation is so significant that it is given a 

specific name: work. Work is the only way to change the mechanical energy a system. 

In the context in Table 1(b), the force both drives and quantifies the rate at which work 

is done as the object’s position changes. Similarly, the total momentum of a system 

changes when a force acts over a time interval. The vector change in momentum is 

equal to the cumulative effect of the vector force over that total time interval. This 

accumulation, too, is so crucial that it is given a name: impulse. Here, the force both 

drives and quantifies the time rate at which momentum changes. 

A student who is well-versed from calculus in the mathematical quantities that make 

up the FTC will be better-positioned to take up the new and challenging ideas that it 

frames when they encounter them in the context of physics. Energy and momentum are 

abstract, being able to fall back on a facility with conceptualizing the calculus can make 

learning them easier. Emphasizing the meaning of the operators, quantities and their 

symbols in the FTC can help prepare students to more easily frame the applications 

they will encounter in their subsequent courses. 

 

 operators quantities language physics examples 

change,  

interval 

d 

 

 

dy  

 

x 

dep. var. – 

change 

indep. var. – 

interval 

impulse as a change in 

momentum 

displacement as a change 

of position 

 

rate    

of change 

 



𝑥
    

𝑑

𝑑𝑥
 

 

Δ𝑦

Δ𝑥
     

𝑑𝑦

𝑑𝑥
 

 

ratio  

of change to 

interval 

acceleration as the time 

rate of change of velocity 

force as the time rate of 

change of momentum 

 

accumulation 
∑  

∫
𝑎

𝑏

 

∑ (
𝑑𝑦

𝑑𝑥
)

𝑖
𝑑𝑥𝑖

𝑖

 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

 

sum of 

many small 

pieces 

 

work 

 

impulse 

Table 2: FTC symbols and quantities common across calculus and physics.  
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IMPLICATIONS FOR CALCULUS AND PHYSICS INSTRUCTION 

Symbols and quantities carry deep significance, and calculus instruction can convey 

that to students. Table 2 presents those that recur in the FTC, and merit instructional 

time in calculus. Physics instructors can help enrich their students’ mathematical 

knowledge by knowing the calculus quantities and correctly using them in physics 

instruction help their students’ calculus knowledge emerge in physics contexts. 
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 In United States universities it is common for undergraduate chemistry majors to 

take calculus during their first two years; however, our work characterizing the 

calculus concepts and skills used in the undergraduate chemistry curriculum 

highlights that calculus is used sparingly until students’ last two years when they take 

physical chemistry. The goal of this conference paper is two-fold: (1) present to the 

interdisciplinary audience our analysis describing the ways students are expected to 

use calculus across the undergraduate chemistry curriculum; (2) open a conversation 

regarding the alignment and relevance of chemistry students’ coursework.    

Keywords: chemistry; calculus; STEM; coursework.  

BACKGROUND 

Our interest in identifying the calculus used across the chemistry curriculum is 

based on the productive conversations that started at The Learning and Teaching of 

Calculus Across Disciplines conference in 2023. During this conference, Brian 

Faulkner gave a plenary that referenced prior work that evaluated the ways calculus 

was used in engineering (Faulkner et al., 2020). This work, as well as other work in 

an advanced mathematics context (Czocher et al., 2013), utilized the Calculus 

Content Framework (CCF), which was developed through consultation with experts 

to outline the specific concepts and skills students are expected to learn in a first-year 

calculus sequence (Sofronas et al., 2011). The utility of this framework is that it 

provides an operationalizable list of conceptual and procedural knowledge to serve as 

a lens to view the chemistry curriculum.  

Within the United States, the university chemistry curriculum typically involves 

students starting with general (introductory) chemistry, followed by four course 

sequences that reflect the historical division of chemistry into subfields based on the 

topic of inquiry: organic chemistry, inorganic chemistry, biochemistry, analytical 

chemistry, and physical chemistry. Mirroring the expert-consensus framework in 

calculus, in this work we used the Anchoring Concepts Content Map (ACCM) 

developed by the American Chemical Society (Murphy et al., 2012). Created through 

multiple iterations with feedback from experts and comparison of alignment with 

exams and textbooks, the ACCM provides a fine-grained overview of the target 

knowledge students should learn in the chemistry curriculum. There is an ACCM for 

each of the chemistry sequences listed above (except for biochemistry, where we 

used a working draft) and they are organized using a tiered system that starts with 
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larger concepts that unify all the course sequences at Level 1 and 2 and becomes 

increasingly more specific for each subdiscipline at Level 3 and 4 (Figure 1). The 

ACCM provided a useful approach to systematically move through the chemistry 

curriculum and consider the ways constructs from the CCF were used in relation to 

each target chemistry idea. 

 

Figure 1: Anchoring Concepts Content Map (ACCM) structure, adapted from 

Murphy et al. (2012). 

CALCULUS CONCEPTS & SKILLS IN CHEMISTRY 

Using the ACCM for chemistry and the CCF for calculus, our analysis looked at 

the general alignment of the frameworks by systematically working through the 

ACCM for each course sequence and coding instances where any of the calculus 

concepts or skills were used in relation to a chemistry Level 3 concept. As part of 

this, when it supported the analysis, we referenced the finer-grained Level 4 to inform 

our characterization. To build a case for the trustworthiness of our qualitative analysis 

(Watts & Finkenstaedt-Quinn, 2021), we began by comparing our characterization of 

calculus use with standardized exams developed by the American Chemical Society 

Exams Institute, which has exams for each course sequence and are commonly used 

as formative assessments in the United States, reflecting the expected knowledge and 

skills students should have after completing a course sequence. Following this, we 

met with a different faculty expert currently teaching each course (e.g., general 

chemistry, organic chemistry, inorganic chemistry, biochemistry, analytical 

chemistry, physical chemistry) and discussed our analysis, asking about their 

experiences regarding the expected calculus use and how that compared with our 

tentative findings. As demonstrated in the findings below, due to the general lack of 

calculus used in most of the chemistry courses, this process worked well for 

validating our analysis –except for physical chemistry. The large amount of calculus 

concepts and skills in physical chemistry necessitated additional work in which 

following our initial coding we had a chemistry education research colleague with 

physical chemistry expertise independently code the physical chemistry ACCM. Each 

calculus concept and skill code assignments were compared, and discrepancies were 

discussed until consensus was reached. 

CALCULUS IN PHYSICAL CHEMISTRY  

Physical chemistry can be thought of as an important capstone to the 

undergraduate chemistry curriculum, focusing on the complex mathematical models 
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that explain chemical phenomena; however, until students take this course, our work 

indicates they are primarily using pre-calculus across the other course sequences in 

chemistry. One of the important disclaimers of our work is that we do not intend to 

suggest that students are not using mathematics in their chemistry courses, but rather 

that the use of calculus is not common until they take physical chemistry. Due to 

space constraints, we will only briefly comment on the use of calculus in the entire 

chemistry curriculum, focusing our discussion on calculus use in physical chemistry.  

Across all five ACCMs, there were a total of N=164 code assignments, with each 

code reflecting a topic in which students are expected to use calculus concepts or 

skills in the chemistry curriculum. Of this code total, 93% of the codes (N=152) were 

applied to the physical chemistry ACCM. The few instances where calculus was 

discussed often involved students using calculus concepts (e.g., reasoning with and 

about the derivative, as opposed to differentiation calculations) to draw conclusions 

about big ideas such as chemical kinetics (an area of study emphasizing the rate of 

chemical reactions). Given the large weighting toward calculus use in physical 

chemistry, the remainder of this discussion will focus on trends noted in relation to 

the calculus concepts and skills used within this course sequence.  

Focusing on the codes applied to the physical chemistry ACCM (N=152), most of 

the expected use of calculus was related to concepts (81%, n=123) instead of skills, 

with the specific distribution of concepts and skills provided in Figure 2. Notably, the 

application of derivatives and integrals were the most common concepts and skills. 

As a disclaimer, within the Calculus Content Framework fundamental theorem limit, 

Riemann sums, and continuity – calculus concepts – and epsilon-delta, definitions, 

limit calculations, and parametric equations – calculus skills – were not identified in 

physical chemistry (or any course across the chemistry curriculum).  

 

Figure 2: Calculus concepts (n=123) and skills (n=29) from the Calculus Concepts 

Framework identified in the physical chemistry Anchoring Concepts Concept Map.  

In terms of the common contexts where students were expected to use calculus, 

Although chemical kinetics, was the primary context where calculus was used across 

the other courses sequences, within physical chemistry, the first three big ideas (that 

emphasize the quantum mechanical treatment of atoms, bonding, and 

Concepts Skills

29



  

structure/function) served as the context for 48% (n = 74) of the calculus codes 

assigned.  

DISCUSSION AND IMPLICATIONS 

Introductory STEM courses are often referred to as gateway courses because of 

the way they serve as an entrance into STEM; however, many comment on the 

resulting gatekeeping effects of these courses that prevent students from remaining in 

STEM, suggesting a potentially high-yield context for intervention (Hatfield et al., 

2022; Matz et al., 2018). In the context of chemistry, perhaps unsurprisingly, there is 

a large body of research that correlates student success with mathematical ability 

(Ralph & Lewis, 2018), including a long history of using standardized college-

entrance mathematics exams to predict students’ success in general chemistry 

(Spencer, 1996). Therefore, for students to be successful in college chemistry, they 

need ample mathematics preparation, which is not guaranteed at the secondary level. 

That said, it is worth reflecting on whether current degree programs provide enough 

time for students to develop the mathematical concepts and skills necessary for 

success.  

For example, consider the typical four-year plan for chemistry majors at the 

University of Wisconsin – Milwaukee (UWM) located in the midwestern United 

States. For students to take physical chemistry as a capstone chemistry course during 

their third and fourth year, students need introductory physics as a perquisite, but 

since physics is calculus-based, students first need to take calculus. As an 

implication, chemistry majors are encouraged to take two semesters of calculus 

during their first year, with two semesters of introductory physics during their second 

year. This timeline does not provide much flexibility, suggesting the need for 

students to be calculus-ready when entering college; chemistry majors that first take 

college algebra and precalculus begin their college career “behind”. UWM is part of a 

larger 13-university state system; each university has similar mathematics and 

science requirements for their chemistry majors.  

Based on our characterization of the calculus concepts and skills students use in 

the chemistry curriculum, we aim to continue the conversations had at the previous 

CalcConf, promoting a much-needed interdisciplinary discussion regarding when 

chemistry students should take calculus. This conversation involves valuable input 

from both experts across fields as we consider the possibility of modifying the 

traditional course sequence and how that impacts coursework across disciplines. As 

part of this, we suggest modifying the typical four-year plan to delay taking calculus 

and communicating the importance of starting with college algebra and pre-calculus 

even if students “tested out” of these courses; however, this would only work if 

students take algebra-based physics instead of calculus-based physics. 
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Mathematical notions, including the fundamental calculus concepts of derivative and 

integral, are often taught abstractly. For science students, such abstract presentation 

is likely to increase difficulties. The question thus arises whether teaching these notions 

in extra-mathematical contexts leads to more profound and more domain appropriate 

conceptualizations. But even before research studies can approach these empirical 

issues, the question arises how to choose appropriate contexts. This paper aims to 

contribute to the discussion about the choice of contexts; it uses chemistry as content 

domain, but analogous questions arise in physics, biology, engineering and economy.  

Keywords: derivative, integral, conceptualization, chemistry contexts. 

INTRODUCTION AND BACKGROUND 

One of the lessons of CalcConf2 was that pure mathematics can be abstract, presenting 

conceptualization difficulties for science students, whose grasp of calculus concepts 

thus often remains superficial. Literature reviews suggest interdisciplinary research to 

better support students in generating constructive meanings for these abstract, concepts 

(Towns et al., 2025). This is coherent with recent literature: Rabin et al. (2021) wrote 

that “The ‘practical’ mathematics used by scientists differs in significant ways from 

the ‘abstract’ or ‘structural’ mathematics taught by mathematicians” (p. 9). Rubel and 

McCloskey (2021) listed rationales to contextualize mathematics; these include 

affective benefits such as motivating learners and helping them see the practical value 

of mathematics, but also the potential to serve as conceptual anchors (Reinke et al., 

2020), through which students make sense of new mathematical concepts. 

The use of extra-mathematical contexts (EMCs) has been proposed for introducing 

high school students and science majors to the fundamental concepts of calculus. For 

example, Elias et al. (2025) report that experts (mathematics educators and experienced 

high school teachers) have identified four characteristics of EMC based situations 

suitable for introducing the concept of derivative as rate of change: time is the 

independent variable, and the situation is familiar, tangible (i.e., concerns a concrete 

process that one can see or touch), and mathematically neat (i.e., only the independent 

variable influences the dependent variable).  

We take as working assumption that it is desirable to use science contexts to either 

introduce from scratch or enhance (henceforth, we will abbreviate these two options as 

“introduce”) science students’ conceptualization of fundamental calculus concepts 

such as the derivative and the integral. We consider treatments of these two notions in 

a way that is mathematically coherent as well as constructive for use in the students’ 

scientific content domain. We focus on chemistry. 
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Kent and Stevenson (1999) have shown that chemistry students’ conceptualization of 

the integral may be sub-optimal, and hence not as constructive as desired. They 

investigated how undergraduate chemistry students in a laboratory situation were able 

to connect their science knowledge that “integrating the force gives the potential 

energy” to their notion of integral. These were students who had learned about integrals 

in their mathematics courses and were asked about their use of integrals in chemistry 

contexts. The findings of Kent and Stevenson (1999) were that the connection was 

tenuous; while students did make a qualitative visual connection between energy and 

area under a graph, this connection had little analytic content. The integral was a 

computational tool in the current situation, and students were not able to make use of 

the underlying ideas in other situations.  

AIM 

This paper presents a didactical reflection by mathematics educators on the use of 

situations from chemistry for introducing students to two fundamental notions of 

calculus, the derivative and the integral. Towns et al. (2025) surveyed situations where 

calculus is used in the undergraduate chemistry curriculum. Among these, they chose 

rate laws for developing a treatment of the derivative as rate of change in a chemical 

context; they chose the expansion of an ideal gas for developing a treatment of the 

integral as accumulation in a chemical context. In the next two sections, these two 

contexts will be examined in view of the four characteristics proposed by Elias et al. 

(2025); the treatments will also be analysed as to their structural analogy to the 

mathematical concepts. As such, the paper does not present an empirical research study 

but is intended to serve as basis for a more refined discussion than was feasible at the 

previous conference.  

A CHEMISTRY CONTEXT FOR THE DERIVATIVE AS RATE OF CHANGE  

Rate laws describe the concentration of a substance during a chemical reaction as a 

function of time. Chemistry students typically learn about rate laws by measuring the 

concentration of a reactant at a sequence of points in time and graphing the 

measurements. They are also told that the rate is usually of the form 𝑘𝐶𝑛 (different 

notations are used in chemistry), where 𝐶 is the concentration, the typical values of 𝑛 

are 0, 1, or 2 for so-called zero order, first order or second order reactions, and 𝑘 is a 

(negative) constant whose dimension depends on 𝑛. 

Towns et al. (2025) propose to introduce students to difference quotients 
∆𝐶

∆𝑡
 (without 

using the ∆ notation), starting from the case 𝑛 = 0, and continuing with 𝑛 = 1, 

explaining why the difference quotient is a measure for how quickly the concentration 

changes, explicitly calling it the rate of change of the concentration in the relevant time 

interval, and asking students to compare rates of change in different time intervals. 

They then note that while the empirical rates are based on a discrete (and not 

necessarily regular) sequence of points in time, the chemical process is continuous and 

one might therefore be interested in the (instantaneous) rate of change at any specific 

point in time, and in how this instantaneous rate of change can be found; this leads to  
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mathematicians calling it the derivative of the concentration at that point in time, and 

to finding the rate constant 𝑘 using the derivative (see Towns et al. 2025 for details). 

The above is an attempt to introduce chemistry students to the notion of derivative in a 

context that is familiar to them from the laboratory as well as tangible: They have 

carried out the measurements. While for some chemicals concentration may not be very 

tangible (and for others, say an acid, one might not want to touch), chemists could think 

about using a substance with a strong colour so that students could not only measure 

but actually see the concentration. In the chosen context, the independent variable is 

time: The concentration varies with respect to time. And the influence of external 

variables is negligible; of course, temperature, for example, may have an influence on 

chemical reaction rates, but chemistry teachers are interested in setting up the 

laboratory for beginning students so that such effects are of no influence on the process. 

Hence, all four criteria of Elias et al. (2025) are rather well satisfied. This context 

teaches us that the four criteria may be intertwined. Familiarity, tangibility and external 

variables all seem to depend on how the laboratory situation is set up. 

Finally, to motivate the notion of derivative, it is desirable to use a context that offers 

a structural analogy with the mathematical process of transition from the algebraic 

notion of difference quotient to the calculus notion of derivative. This transition should 

make sense or even be desirable from the point of view of the context. Here it is the 

continuity of the chemical process (as opposed to the discreteness of the points in time 

at which the concentration has been measured) that motivates making the time intervals 

shorter, in fact as short as we please. An analogy thus exists between the chemical 

context and the mathematical transition to the limit. Students may experience how the 

mathematical notion of derivative models the very short but not sharply defined time 

intervals, about which chemists might think.  

A CHEMISTRY CONTEXT FOR THE INTEGRAL AS ACCUMULATION  

Chemists describe 𝑃𝑉-work as the work done on (or by) a frictionless movable piston 

as the volume 𝑉 of a fixed amount of gas changes at a constant temperature 𝑇 against 

an external pressure 𝑃𝑒 on the piston. Chemistry students are typically asked to examine 

the work done during such an expansion in several steps, each taking place against an 

external pressure 𝑃𝑒 and doing work 𝑃𝑒 ∙ ∆𝑉, where ∆𝑉 is the change in volume during 

the step. Here 𝑃𝑒 is taken to be constant during each step, and somewhat smaller than 

the gas pressure 𝑃, which is why the gas is expanding. Figure 

1 shows a graphical representation of the work done in a three-

step expansion. The grey rectangle areas represent the work 

that accumulates as the gas is expanding. Students compare the 

work done in one-step, two-step and three-step expansions, and 

to discuss how to maximise the work done. This naturally leads 

to increasing the number of steps, while decreasing the 

difference between the external pressure and the gas pressure 

at each step. The limit case obtained in this way is important 

 

Figure 1: Three-

step expansion 

34



  

for the chemist: It is reversible since the two pressures are equal for every value of the 

volume. The increase in the number of steps is structurally equivalent to the passage to 

the limit in a Riemann sum; this provides a structural analogy between the chemical 

situation and the mathematical concept. To make the mathematics more concrete and 

the computations feasible, the behaviour of the gas may be approximated by the ideal 

gas law 𝑃𝑉 = 𝑛𝑅𝑇, that gives the gas pressure 𝑃, when 𝑇 is the temperature, 𝑛 is a 

measure for the amount of gas, and 𝑅 is a constant. We refer the reader to Towns at al. 

(2025) for a more detailed description of the introduction to integration in the chemistry 

context of 𝑃𝑉-work.  

With respect to the four characteristics in Elias et al. (2025), the ideal gas expansion 

context has volume rather than time as independent variable. The students’ experience 

with the context is likely to contribute to their familiarity with it; on the other hand, the 

physics notion of work is quite abstract and moreover the situation requires the 

transition from work as force along a path to the work 𝑃𝑒 ∙ ∆𝑉 done by the gas on the 

piston. The context is  tangible – in a suitable experimental situation one can clearly 

feel the pressure exerted by the gas. External variables may be a disturbing factor; on 

the one hand, the temperature 𝑇 and the amount 𝑛 can be kept quite constant; but on 

the other hand, the gas is real and might deviate from ideal gas law.   

CONCLUDING REMARKS 

We considered two contexts from chemistry as EMCs to introduce abstract  

mathematical concepts, the context of a chemical rate law for an introduction to 

differentiation and the context of the expansion of a gas for an introduction to 

integration. In each case, we have pointed to the structural analogy between the 

chemical process and the mathematical concept. We suggest that such a structural 

analogy is a crucial prerequisite for the successful use of the EMC for introducing a 

mathematical concept, and that such an analogy may support students in using the EMC 

as conceptual anchor in the sense of Reinke (2020). 

We also analysed the two contexts in terms of the characteristics of EMCs proposed 

by Elias et al. (2025). We found that rate law context satisfies these characteristics to 

a much larger extent than the ideal gas context. A main such characteristic is time as 

the independent variable. People naturally tend to think of processes in daily life or in 

science such as the expansion of a gas or a chemical reaction in terms a change 

happening in time. Rates of change with respect to other variables than time, while 

mathematically equivalent, do not correspond to our experience. It is an empirical 

question, what influence this has in practice.  

We have used the domain of chemistry. The question arises whether the situation is 

substantially different in other content domains. While chemistry offers some suitable 

contexts for calculus concepts, the choice is limited to a few subdomains of chemistry 

(Towns et al., 2025); physics and engineering might have a larger number of suitable 

contexts, while biology and economic might have fewer. Moreover, while issues of 

discretization are present in all sciences, they might be harder to overcome in 
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economics, because in many contexts of the natural sciences and engineering, the 

underlying processes are continuous as are the ones in this paper, and the discretization 

occurs because of the discrete nature of laboratory measurements, but in economics, 

the underlying processes are often discrete themselves.   

Finally, a didactic issue when using EMCs concerns the desirable number of contexts. 

The use of a single EMC might tightly link the mathematical concepts introduced to 

this specific EMC. The use of more than one EMCs might enhance the potential 

productivity of the students’ meanings, but it might, on the other hand, impose a high 

cognitive load. Will the gain from linking between a variety of EMCs be lost by the 

increased cognitive demands on the students? These are issues for empirical research 

raised by the attempt to use EMCs to introduce basic abstract mathematical notions.   
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Abstract. Calculus courses in Biomedical Engineering degrees in Spain and Portugal 
do not usually relate the mathematics taught in the classroom with possible 
applications in the medical field. To overcome this lack of connection, we present two 
proposals based on inquiry-based learning, the so-called Study and Research Paths, 
which have been implemented in the last two academic years at a Spanish university. 
Both proposals consider the concentration of a given drug in the bloodstream of a 
certain individual, in which the relationship between functional modelling and 
elementary differential calculus lead to answer to the medical problems addressed. 
Keywords: Anthropological Theory of the Didactic, Biomedical Engineering degrees, 
Modelling, Calculus, Study and Research Path. 
INTRODUCTION  
In recent years, the number of health-related technical degrees has increased 
significantly. According to WHO (2017), 67% of Biomedical Engineering degrees 
(BMED) in Europe have been introduced since 2000. This increase is mainly due to 
the need to train professionals capable of facing the current challenges resulting from 
the continuous technological advances that impact medicine. These studies must 
consolidate knowledge in both the engineering and medical fields, so a number of 
subjects requiring a high level of mathematical knowledge are compulsory. Hence the 
inclusion of Calculus course in BMED. 
In the particular case of BDEM in Spain and Portugal, the syllabi include, as a 
minimum, the study of real functions of a real variable (domains, continuity, 
derivability and integrability) and present a rather standard organisation. There is 
hardly any reference to biomedical applications, which evidences an attitude of 
‘applicationism’ as pointed out by Barquero (2013). Moreover, lecturers usually do not 
have a background in health sciences, which makes it difficult for them to propose 
applications outside the syllabus. In addition, in none of the syllabi consulted is there 
any reference to a book on mathematics for biomedicine.  
However, although the contents description and bibliography do not refer to possible 
links with medicine, the ‘learning outcomes’ always allude to such applications. In 
fact, there are numerous references to future applications, to be carried out once both 
the contents and solution techniques have been assimilated – provided there is time to 
do so –, but never as a starting point for biomedical engineering problems. Precisely 
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this contradiction leads to our research question: How can the content of a Calculus 
course be articulated with medicine in BMED in a more functional way? 
There is not much research on teaching and learning processes in BMED, as in other 
engineering degrees (González et al., 2022; Faulkner et al., 2020; Pepin et al., 2021). 
These studies agree on the need to incorporate mathematical modelling into these 
processes, as it allows the mathematics taught in the classroom to be related to its future 
application in a specific field. On the basis of these studies, we present two different 
experiences carried out over the last two years in a BMED at a Spanish university. 
METHODOLOGY 
In order to incorporate mathematical modelling and put it at the centre of the study 
process, we use inquiry-based learning proposals based on the tools offered by the 
Anthropological Theory of the Didactic (ATD). In particular, we use didactic devices 
called Study and Research Paths (SRPs) that have been implemented for two decades 
in several universities (Chevallard, 2015; Bosch, 2018). SRPs have shown to play an 
effective role in articulating the mathematical contents of a first university course and 
connecting them with future applications (Barquero et al., 2018; Barquero et al., 2021; 
Florensa et al., 2018; Florensa et al., 2019; Fonseca et al., 2014). 
The SRPs are based on a generative question proposed to the students, which is related 
to their professional future and has no direct answer. The main goal is that students 
work out a final answer to the initial question through a sequence of derived questions 
and their associated answers. The mathematical tools that enable them to progress 
along their path are not always known, and their introduction are therefore justified. 
Students work in small groups and through a process of inquiry take on different 
responsibilities and combine moments of studying of the available information with 
moments of research (Winslow et al., 2013). 
EXPERIMENTATION AND RESULTS 
We present two SRPs that have been carried out with first-year BMED students in a 
Calculus course at a Spanish university in the academic years 2023/24 and 2024/25 
(Serrano, 2024; Serrano et al., 2024). In this degree all courses are characterized by a 
case study methodology, conditions that facilitated the implementation of the SRPs. 
The SRPs run in parallel to - but separately from - the traditional theory and practical 
classes. 
These SRPs are partially derived from a reference epistemological model based on the 
work of Lucas (2015), built around the relationship between functional modelling and 
elementary differential calculus in the transition between secondary education and 
university, focusing in particular on the Spanish and Portuguese education systems 
(Gascón, 2014; Lucas et al., 2019; Florensa et al., 2020).  
In both cases, the SRP was related to the concentration of a particular drug in the 
bloodstream. In one case, the initial question guiding the research process was how to 
control the anticipation of a certain dose of a regularly administered drug. In the other 
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case, the question concerned the change in the amount of nicotine when smoking a 
cigarette. The students had to find functional models characterising the systems 
(exponential functions, surge functions, etc.) that depend on different parameters. 
Precisely, SRPs promote work with parameters, which is a type of activity that is not 
usually within the domain of students. 
The analysis of the behaviour of these functional models led them to establish 
relationships between variations or behaviour – medicine – with derivatives or limits – 
mathematics – and to study how different parameters influence the characteristics of 
their models, and are related with physiological characteristics. In both cases, new 
questions must be posed to answer the initial question, whose solutions open the way 
to the final answer. The use of mathematical software such as GeoGebra was useful in 
the activity. 
In addition to the class work, students had to periodically present their results in a 
written report as part of the course evaluation, and they had to fill in different 
questionnaires that allowed lecturers and researchers to evaluate the work done during 
the SRP. 
CONCLUSIONS 
The syllabi of the Calculus course in Biomedical Engineering degrees in Spain and 
Portugal are very similar to those offered in any other engineering degree and hardly 
present applications to the medical field.  Moreover, the lack of lecturer training in the 
medical field, together with the scarcity of available bibliography, makes it difficult to 
offer these applications. This situation makes it challenging for students to understand 
the usefulness of mathematics in their professional future.  
To overcome these issues, we present two SRPs implemented in the last two years, 
which have proven to be a relevant tool to answer our research question. Both SRPs 
facilitate the relationship between functional modelling and elementary differential 
calculus from a biomedical problem, while establishing connections between 
mathematics and medicine.  
The students have valued the activity very positively, as they have managed not only 
to understand the usefulness of mathematics in their future professional practice, but 
also to carry out a type of mathematical work that is very different from what they are 
used to, adopting roles that are normally attributed to the lecturer, such as deciding 
paths and strategies to follow, working with parameters or presenting results in the 
form of a report. 
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Although mainly supplanted by the limit definition in modern mathematics, 
differentials are commonly applied in other STEM disciplines and in economics. In this 
exploratory study, we investigated how differentials are understood in different 
disciplines: macroeconomics, chemistry and physics. Our results point out several 
conceptions of differentials that are used across these disciplines, while others seem 
more discipline specific. 
Keywords: differentials, ways of understanding, teaching and learning of specific 
topics in calculus, mathematics practices related to calculus across disciplines. 
INTRODUCTION 
Differentials played an important role in the early development of calculus, but were 
later largely abandoned in favor of the limit approach considered more logically sound 
(Ely, 2021). Yet, they are still commonly applied in economics and the STEM 
disciplines, such as physics, where they are not only used for historical reasons but also 
because they can make some calculations simpler. More importantly, these disciplines 
come with their own contextualized interpretations, for instance, as an infinitesimally 
small increment in physics (López-Gay et al., 2015) or the change due to an increase 
by one more unit in economics (Feudel & Skill, 2024). These interpretations do not fit 
to the way differentials are usually introduced in calculus. Such discrepancies can lead 
to gaps for students and could have a negative impact on their understanding of the 
mathematical notions. Therefore, it is important to explore how mathematical concepts 
are understood and used in other disciplines in order to bridge such gaps.  
In this article, we want to present an explorative study in which we investigated how 
differentials are understood in different disciplines, namely economics, chemistry, and 
physics. This is important in order to identify the meaning of differentials that students 
of these disciplines are expected to draw upon in their major subjects. Despite its 
importance, this issue has not been investigated thus far, as the focus of previous 
research on differentials lay mostly on students’ conceptualizations.  
THEORETICAL FRAMEWORK AND METHODS OF THE STUDY 
In the study presented here, we intend on extending the work on differentials done by 
Feudel and Skill (2024), who investigated how differentials are understood in 
microeconomics. They grounded their study in Harel (2008)’s framework using the 
construct way of understanding, which he defined as follows: 
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A person’s statements and actions may signify cognitive products of a mental act carried 
out by the person. Such a product is the person’s way of understanding associated with that 
mental act. (Harel, 2008, p. 490) 

As Feudel and Skill (2024), assuming “that thinking cannot be separated from 
communication”, we consider textbooks as “signifiers of the cognitive products of [the] 
mental acts [of the authors]” (pp. 5–6). In other words, explanations provided in the 
textbooks indicate ways of understanding differentials the authors draw upon.  
Based on an analysis of microeconomics textbooks, Feudel and Skill (2024) identified 
nine ways of understanding differentials relied upon in microeconomics labeled as 
conceptions in Figure 1.  

 
Figure 1: Ways of understanding differentials relied upon in microeconomics textbooks 
(Feudel & Skill, 2024, p. 9) 

In this explorative study, we extend the focus on: (1) Macreoeconomics — the other 
core area in economics study programs besides Microeconomics; (2) Chemistry; 
(3) Physics. In order to find out how differentials are understood in these fields, we 
used the conceptions from Figure 1 as “reference conceptions”. 
Similar to Feudel and Skill (2024), we also analyzed textbooks: one for each field. For 
chemistry and physics, we chose two textbooks that are widely used according to 
teachers of the disciplines at the authors’ institutions (Atkins et al., 2023; Serway & 
Jewett, 2019). Concerning macroeconomics, however, the most common textbooks 
evade calculus. Therefore, we chose for this area a book that explicitly used calculus 
(Qian, 2023).  
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RESULTS OF THE STUDY 
Conceptions of differentials used in the analyzed macroeconomics textbook 
In the analyzed macroeconomic textbook (Qian, 2023), the occurrences of differentials 
are rather limited. Nevertheless, several conceptions from Figure 1 are used.  
First, quotients of differentials occur several times in the textbook. These are mainly 
just used as symbols for the derivative (conception 1 in Figure 1). Only once is a 
differential quotient interpreted in the context in the definition of the marginal 
propensity to consume (𝑀𝑃𝐶 = !"($)

!$ ) as “the amount of additional consumption given 
unit increase in disposable income” (p. 53). Here, the differential quotient is interpreted 
as the change in 𝐶 when increasing 𝑌 by one unit (conception 5 in Figure 1). 
Sometimes, differentials also occur as single objects. In this case, they are considered 
as finite increments and as symbols that can be manipulated according to certain rules, 
for instance in the chapter on the IS-LM-model describing relationships in the market 
for goods and the money market. Here, Qian (2023) uses differentials in a symbolic 
derivation of certain equations (pp. 129–132). The IS-curve, for example, describes in 
the equilibrium of a marked for goods (i.e., demand equals income) the dependence of 
the gross income 𝑌 from transfers 𝑇 like taxes, the government expenditure 𝐺, and 
investments 𝐼. It is given by the equation 𝑌 = 𝐶(𝑌 − 𝑇) + 𝐼(𝑌, 𝑟) + 𝐺 with 𝐶 being 
the consumption and 𝑟 the interest rate. The author then argues that total differentiation 
yields (1 − 𝐶!(𝑌 − 𝑇))𝑑𝑌 − 𝐼!(𝑟)𝑑𝑟 = 𝑑𝐺 − 𝐶!(𝑌 − 𝑇)𝑑𝑇, explaining that one may 
regard 𝑑𝑌 and 𝑑𝑟 as changes in 𝑌 and 𝑟. Hence, the author uses certain rules to derive 
the final equation and interprets the differentials as finite increments (conceptions 6 
and 9 in Figure 1). He also later uses them as variables in a linear matrix equation. 
Conceptions of differentials used in the analyzed chemistry textbook 
In the analyzed physical chemistry textbook (Atkins et al., 2023), the conception of 
differential as an infinitesimally small quantity is very prominent. For example, when 
treating the first law of thermodynamics (p. 37 ff.), Atkins first explains that changes 
in the total energy 𝑈 of a system that is closed, i.e., that cannot transfer matter with its 
surroundings, only result from work 𝑤 done on the system and heat 𝑞 transferred to it: 
Δ𝑈 = 𝑞 + 𝑤. He then introduces differentials in this context as follows (p. 37): 

To take the discussion further and open up to the full power of thermodynamics, it is 
necessary to rewrite that equation in terms of an infinitesimal change in the internal energy 
𝑑𝑈. Thus, if the work done on a system is dw and the energy supplied as heat is 𝑑𝑞, then 
𝑑𝑈 = 𝑑𝑞 + 𝑑𝑤. 

Hence, the differentials are understood as infinitesimally small quantities (Figure 1, 
conception 8). Sometimes, however, Atkins also communicates about differentials as 
if these represented finite changes (Figure 1, conception 9), for instance in the context 
of entropy changes of a system that occur as a result of physical or chemical changes, 
such as vaporization.  
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A specificity regarding the usage of differentials in chemistry that we did neither find 
in physics nor in economics is the distinction between exact and inexact differentials. 
Atkins first explains that there is an important difference between state functions like 
the internal energy and path functions like heat or work (p. 58). Changes in a system’s 
state can occur in multiple ways (“along different paths”). For instance, a system can 
be transferred from one state to another (e.g., a change in the temperature) by 
performing work or supplying heat. The change in the internal energy, however, does 
not depend on the path, but only on the initial and final states of the system. In this 
case, the differential of the quantity is called exact differential. However, the changes 
of 𝑞 and 𝑤 occurring in the system are different for these two paths. In this case, the 
differentials are called inexact, which Atkins defines as follows (p. 59): 

An inexact differential is an infinitesimal quantity that, when integrated, gives a result that 
depends on the path between the initial and final states.  

Afterwards, he explains that inexact differentials are often even written with other 
symbols, for example đ𝑞 instead of 𝑑𝑞. 
Conceptions of differentials used in the analyzed physics textbook 
Most of the conceptions from Figure 1 are present in the analyzed physics textbook 
(Serway & Jewett, 2019). The two exceptions are the differentials as a linear 
approximation (conception 7) and the discrete interpretation of the differential quotient 
as the change in 𝑦 when increasing 𝑥 by one unit (conception 5). The most frequent 
conceptions from Figure 1 consist in a symbolic use of the differentials: in  !&!' as a 
notation for the derivative or slope only (conception 1), in the form !!' to differentiate 
some expression (conception 2), or as symbols to be manipulated (conception 6). 
Other conceptions emerged in physics that were not present in the other analyzed 
textbooks, that of the differential as a small amount quantity and as a discrete punctual 
quantity. They distinguish themselves (1) from the conception of the differential as an 
infinitesimal quantity (conception 8), as they are not expressed as infinitesimally small, 
and (2) from the conception of the differential as a finite change (conception 9), as they 
do not convey the idea of change. For example, in computing the electric potential due 
to a uniformly charged disk, Serway and Jewett (2019, p. 649) explain: 

The calculation of the electric potential at any point 𝑃 on the 𝑥 axis is simplified by dividing 
the disk into many rings of radius 𝑟 and width 𝑑𝑟, with area 2𝜋𝑟	𝑑𝑟. 

Here, the differential 𝑑𝐴 = 2𝜋𝑟	𝑑𝑟 (see Figure 2a) does not represent a small change 
in the area, but a potentially small element of area that would add up to form the whole 
disk. The conception of the differential 𝑑𝐴, represented as a shaded ring in Figure 2a, 
is not the same as the conception of the differential 𝑑𝑚 represented in blue in Figure 2b 
which illustrates the “parallel-axis theorem” – a result useful in the calculations of 
moments of inertia. Here, the authors specify that “the mass element 𝑑𝑚 has 
coordinates (𝑥!, 𝑦!, 0)” (p. 265), which reinforces the idea of the differential 
representing a discrete or punctual quantity. 
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(a) 

 

(b) 

 
Figure 2: Differential as (a) small amount quantities and (b) discrete punctual quantities 
(Serway & Jewett, 2019, pp. 649 and 266) 

SUMMARY AND SHORT DISCUSSION 
Our explorative study of one macroeconomics, one chemistry, and one physics 
textbook indicates that some of the conceptions of differentials that are commonly used 
in economics appear in multiple disciplines. For instance, we found the conception of 
the differential as a small change or increment in all the analyzed textbooks. However, 
others seem to be discipline specific, like the discrete interpretation of differential 
quotients in economics or the differential as a punctual quantity in physics. Hence, 
more data is needed to find out to what extent our preliminary findings from one 
textbook for each discipline are generalizable. 
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In this paper we study how physics educators teaching an introductory course in 
mechanics address programming and computational thinking in an effort to give 
students insights into the calculus of the equations of motion. We investigate this 
through the theoretical lens of Communities of Practice. The theory’s three key 
components domain, community and practice are used as a backdrop when analysing 
transcripts of semi-structured interviews with three physics educators involved in the 
introductory course.  Our analysis shows that the educators invoke modelling 
processes by working with the equations of motion numerically in an experimental 
setting in an attempt to promote students’ conceptual understanding of core concepts. 
We argue that computational thinking can indeed be a helpful tool for students working 
in the undergraduate introductory course in mechanics, by bridging the components of 
physics and calculus. 
 

Keywords: computational thinking, mechanics, conceptual understanding, 
communities of practice, modelling. 
 

BACKGROUND AND RESEARCH QUESTION   
The aim of this research paper is to explore the link between the three components 
physics (more specifically mechanics), calculus and computational thinking. This is 
done by investigating how Computational Thinking (CT) is used as a tool when 
working with calculus concepts in an introductory physics course. The term CT was 
popularized in a short article by Wing in 2006, but the term has a long history stemming 
from the constructionist research community of Papert et. al, however with slightly 
different meanings (Wing, 2006, Papert, 1980, Papert, 1991). A fully agreed upon 
definition of CT does not exist, but CT refers to a competence that is wider than merely 
coding or programming. Cuny et al. define computational thinking as “… the thought 
processes involved in formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an information-processing 
agent.” (Cuny, Snyder, Wing, 2010, cited in Wing, 2011, p. 20). This definition is also 
close to the definition given by Denning and Tedre (2019, p. 15): “Computational 
thinking is the mental skills and practices for designing computations that get 
computers to do jobs for us and explaining and interpreting the world as a complex of 
information processes.”  
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We argue that computational thinking goes hand in hand with calculus, which in a 
historic perspective was developed from a need to be able to make models of what is 
observed in the real world, and to predict what would be the consequences of this 
mathematical modeling process. The fundamental tools of calculus are important to all 
STEM-disciplines, but it is not necessarily easy for students to see the connections 
between different disciplines.     
Orban & Teeling-Smith (2020) propose four rationales for integrating computational 
ideas into an introductory physics course:  

1. CT is integral to physics as a discipline.  

2. Using CT to simulate physical systems is often non-trivial. 

3. Creating and debugging programs modelling physical phenomena is challenging. 

4. CT is valuable as a representation of physics. 

With these arguments as a foundation, we study an introductory physics course to see 
whether we can identify CT’s role when working with calculus and the equations of 
motion. Our research question is: 
“How is the role of computational thinking addressed in the practice of a specific 
introductory mechanics course when working with the equations of motion?” 
The research setting for this project is an introductory physics course in mechanics 
intended for first year undergraduate students at the University of Oslo. The course is 
designed in such a way that the students meet realistic physical modelling using data 
from their own measurements during experiments. Around 150 students participate in 
the autumn’s run of the course, and 50 students in the spring. The course has six hours 
of teaching per week. This includes two hours of lectures and two hours of seminars, 
group work for all participating students with multiple instructors. The last two hours 
have alternated between traditional work in small groups and the seminar model, as the 
groups suffered low attendance numbers. 
We ground our data generation for this short communication in a document from the 
course’s curriculum: Experiment 1. The document describes one of the experiments 
that are mandatory for the students to participate in to pass the course. The document 
is used as a foundation because it encompasses CT, physics and calculus in a natural 
way. A quote from the purpose of this experiment is given underneath to illustrate this 
point (freely translated from Norwegian to English): 

Experiment 1 – acceleration: “(…) You will then program a numerical method for 
integration and use this method to find relevant measures and also discuss the uncertainties 
in your own results.” 

We note that both the teaching material and the educators talk about numerical methods 
in a way that we interpret as part of the definition of CT as defined by Denning and 
Tedre (2019). 
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THEORETICAL FRAMEWORK  
The theoretical framework Communities of Practice (hereafter referred to as CoP) 
forms the backdrop of this investigative project. CoP provides a lens through which the 
integration of programming into the teaching of calculus in a university physics course 
can be explored. Learning in CoP is conceptualized as a social process situated within 
a community that shares a domain of interest, engages in mutual participation, and 
develops shared practices (Wenger, Trayner & De Laat, 2011). From this we can 
identify the theory’s three main components: domain, community and practice.  
The domain refers to the area of knowledge that defines the community and gives it its 
identity. Shared interests and goals are also part of a community’s domain. The domain 
defines the key issues that the community’s members address and work with (Smith, 
Hayes & Shea, 2017). The community refers to the individuals who find relevance in 
the domain and work together with the ideas, goals and topics contained within it. The 
relationships among members of the community and the boundaries defining the inside 
and outside of the community are also of key interest. The practice refers to the 
constructs, both cognitive and physical, that enable the members of the community to 
act in the world (Consalvo et al., 2015). The practice is developed by and shared among 
the members of the community. The constructs constituting a community’s practice 
consist of, but are not limited to, methods, tools, documents, programs and the body of 
knowledge constituting the community’s domain. In this project we define the 
community to be the collection of people involved in the introductory mechanics 
course that we base our data generation on. This involves both employees of the physics 
department involved in the course (lecturers, administration, course coordinators, etc.) 
and the students taking the course. When the community is now defined, the domain 
and practice are more or less self-explanatory. The domain in this project is the body 
of knowledge contained in the course, both the knowledge that is to be taught during 
the course and the pre-requisites needed to take the course. Finally, we can deduce that 
the practice is the collection of constructs associated with the course and its domain. 
From these definitions we can formulate that the research in this project concerns the 
lecturers and students of the community, namely the integration of the equations of 
motion from the domain, and the associated constructs from the practice. We study the 
practice from the perspective of three educators who are teachers of the course. 
 
METHODOLOGY 
Semi-structured interviews of three educators (E1,E2 and E3) involved in the course 
were performed. All three educators have been teaching the course, but at different 
times. One of the educators taught in the spring semester, and the two others in the 
autumn semester. In the interviews we focused on the role of computational thinking 
in the teaching of the course. The educators were all asked to reflect on how 
programming and computational thinking is utilized in their teaching, before the 
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attention was turned towards the experiment and the computational aspects of working 
with the equations of motion.  
As mentioned previously, the interviews are to some extent grounded in one of the 
experiments that the students take part in during the semester. In this experiment the 
students use the built-in accelerometer in their own mobile phones as a measuring 
device. The students measure the acceleration 𝑎(𝑡) of a lift going to the top of the 
physics building, ultimately for finding an estimate of the height of the building. The 
experiment involves modelling, calibration, measurement and analysis. The 
measurements give the students a set of discrete data points for acceleration versus 
time, which must be numerically integrated (using finite differences) to get the velocity 
𝑣(𝑡) and further integrated to get the position 𝑝(𝑡). The results are shown as plots of 
𝑎(𝑡), 𝑣(𝑡) and 𝑝(𝑡).  
 

FINDINGS 
The course has been designed to be a first semester physics course, where students 
meet mechanics and modelling. Most of the students follow the course in parallel with 
an introductory calculus course at the mathematics department. This means that some 
of the more advanced concepts of calculus (i.e. differential equations) are not known 
to the students prior to the physics course.  

E3: “I see that many find it a bit overwhelming, it’s a bit much, maybe too many 
things to master, and it takes some time before they feel confident with it.” 

Although this could cause some problems, our analysis shows that the educators 
indicate that by participating in the modelling process as part of the course’s shared 
repertoire, and making their own measurements in these processes, the students get 
hands-on experience which can be used to build a deeper knowledge. This implies that 
involving modelling processes as a part of the indigenous purpose of the course’s joint 
enterprise might have beneficial consequences.   
Approaching the equations of motion in physics problems through experiments that 
require measurement and numerical methods gives students a direct way to tackle more 
complicated problems than they would be able to handle if they were supposed to solve 
analytical problems.  

E3: “We use numerical methods while they are learning mechanics and 
simultaneously learning about the analytical solution of differential 
equations.” “They get a more formal introduction to this later in a [calculus] 
course, ..., we’ve made it more practical, how to do it both analytical and 
numerical throughout the semester.”  

Formulating and solving the numerical problems seems to be easier for the students 
than finding analytical solutions to the problems, where algebraic manipulations might 
act as barrier for conceptual understanding. This illustrates how the educators 
consciously address the shared repertoire of the practice through computational 
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thinking in an effort to lower the degree of abstraction related to the various calculus 
concepts involved in the equations of motion. The students are in Experiment 1 facing 
the fact that small errors in the calibration of the device can lead to large errors when 
integrating for finding the height of the building. Thus, by implementing modelling 
and programming as part of the course’s domain, the students not only gain experience 
with how calculus can be used for analysis of movement, but they also get knowledge 
which is in the core of the game of experimental physics, namely modelling and error 
estimation.  
CONCLUSION AND FURTHER RESEARCH 
The findings in this research project support that computational thinking can be 
effective as a link between calculus, physics and the technical components involved 
when working with the equations of motions in an experimental setting. Further 
research involves going deeper into the analysis of the interviews that has been 
performed, and doing content analysis on the teaching material used in the course. This 
would enable us to see if the findings from the content analysis are consistent with the 
ones laid out in this project. 
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The conceptualization of physical and dynamic phenomena through functional 

relationships requires covariational reasoning to grasp the mutual relations between 

the quantities involved. Additionally, interpreting and explaining these phenomena 

necessitates engaging with and linking their representations to achieve a 

comprehensive understanding. In this contribution, we show how a student engages in 

covariational reasoning while interpreting and connecting different representations of 

a physical phenomenon. The methodological tool of eye-tracking was used to collect 

data on these aspects. The qualitative analysis revealed specific connections between 

the dynamic object and the graphical representation. 

Keywords: covariational reasoning, semiotic representations, physical phenomena, 

eye-tracking. 

INTRODUCTION  

Mathematical reasoning is vital for interpreting dynamic phenomena in the physical 

world. One of the key forms of reasoning for this purpose is covariational reasoning, 

which refers to the cognitive ability to understand how quantities change in relation to 

each other (Thompson & Carlson, 2017). Covariation involves tracking changes in one 

variable as they correspond to changes in another, such as how distance changes over 

time or how gravity force changes with respect to the distance between the masses 

involved. It is fundamental for meaningfully understanding functional relationships in 

various contexts, including physical phenomena such as motion or growth, economic 

trends, or ecological systems. The conceptualization of dynamic situations from the 

physical world requires a suitable form of reasoning to conceptualize both variations 

and co-variations of the quantities involved. Additionally, interpreting and explaining 

these phenomena necessitates engaging with their representations and linking different 

representations to achieve a comprehensive understanding of the phenomenon.  

For researchers, accessing students’ cognitive processes is nothing but trivial. To 

achieve this, appropriate methodological tools must be utilized, and effective task 

designs developed. Eye-tracking technology has proven to be a powerful method for 

inferring cognitive processes based on eye movements. Literature suggests that it is 

essential to elaborate on domain-specific interpretations and avoid relying solely on 

gaze (Schindler & Lilienthal, 2019). In this contribution, we discuss how a student 

engages in covariational reasoning as he conceptualizes a physical phenomenon by 

connecting two distinct representations provided. 
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THEORETICAL FRAMEWORK  

Covariational reasoning entails envisioning how quantities change in relation to each 

other. It enables individuals to conceptualize the relationship between two quantities 

by identifying how they change simultaneously (Thompson & Carlson, 2017). For 

example, let us imagine a ball rolling down an inclined plane. A person being able to 

reason covariationally would conceptualize how the distance travelled by the ball 

increases over time. Thompson and Carlson (2017) have developed a taxonomy of six 

levels of covariational reasoning: no covariation, pre-coordination of values, gross 

coordination of values, coordination of values, chunky continuous covariation, and 

smooth continuous covariation. Such levels are descriptive of a person’s ability to 

engage in covariational reasoning. Effective forms of continuous covariation emerge 

only at the final two levels of the framework, each characterized by distinct underlying 

images of change—either in discrete chunks or as a smooth progression. 

Covariational reasoning is essential for interpreting graphs, equations, or physical 

phenomena that represent these functional relationships. Moreover, covariational 

reasoning closely relates to the ability to navigate multiple representations to fully 

understand dynamic relationships (e.g., Rolfes et al., 2022). Simulations of physical 

phenomena are represented through various semiotic registers, including graphs, 

symbolic equations, tables, and verbal descriptions. For instance, to understand the 

acceleration of an object, one might interpret the slope of a velocity-time graph, write 

the corresponding derivative equation, and provide a verbal description of the process. 

Duval (2006) argues that effective mathematical reasoning requires both treatments 

(manipulations within a single representation) and conversions (connections between 

different representations). In our view, covariational reasoning may depend on both 

processes—manipulating individual representations, creating connections, and 

integrating insights from multiple representations to achieve a coherent understanding. 

METHOD 

This contribution analyses an experiment involving a 16-year-old student -Yuval- from 

a public school in Israel. The study presented here is part of a larger project in which 

participants engaged with five task units. In this analysis, we will focus solely on the 

first task unit, which simulates a physical phenomenon. The first animated task tackled 

the phenomenon of a ball rolling down an inclined plane (the well-known Galileo 

experiment), focusing on the dependence of the traversed distance on time. The 

animated task consisted of three parts and here we will present the first two: (a) a short 

dynamic stimulus consisting of a simulation of the physical situation 

(https://www.youtube.com/watch?v=U2XfNJCJdkw) which was shown three times; 

(b) a descriptive task, where, starting from a picture of the inclined plane on the left 

and the distance-time graphical representation on the right, the student is asked to 

describe the mutual dependence of time and distance (Figure 1) and so possibly 

engaging in forms of covariational reasoning. 
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Figure 1: Descriptive task (translated 

from Hebrew into English) with the 

inclined plane on the left and a graphical 

representation on the right. 

 

 

 

 

While the entire experiment was video-recorded, gaze-related data was collected with 

a screen-based eye tracker: Tobii Pro Fusion (250 Hz, binocular). A 9-point calibration 

procedure was performed, and inaccuracy was considered in the task design and data 

interpretation. After solving all the task units, a stimulated recall interview (SRI) was 

conducted: the student was shown the gaze-overlaid video generated by the software 

Tobii Pro Lab as stimulus. In such a video, gazes are displayed as animated wandering 

red dots and connected by lines helping the observer to keep track of their sequence. 

During the SRI, under the interviewer’s (the third author) questions, the participant 

could provide an explanation for his gazes and his claims. No questions were asked 

when re-watching the stimulus (a) phase. In this contribution, we qualitatively analyse 

the piece of experiment concerning the dynamic stimulus (a) and the descriptive task 

(b). The analysis was conducted by considering both the videorecording of the 

experiment and the gaze-overlaid video which were integrated and analysed with the 

support of Camtasia Studio software. The analysis focuses on the relevance attributed 

by the student, and detected by interpreting his gazes, to the various representations at 

stake. An interpretation of the emerging covariation was elaborated based on the gaze 

plots, and the student’s claims (during the experiment and the SRI). 

RESULTS  

This episode, which lasts in total 56 seconds, illustrates how Yuval employed 

covariational reasoning to understand the dynamics of a ball rolling down an inclined 

plane. Analysis of Yuval’s gaze indicates that he spent the first 15 seconds exploring 

the relationship between two representations: the dynamic simulation and the graphical 

representation. Shortly afterwards, he read the verbal instructions for the task, which 

took him about 14 seconds. From the second 29 until the end of the episode (the 

descriptive task), Yuval focused solely on the graphical representation. 

Yuval’s initial focus was on the label of the vertical axis (s-axis from now on), where 

the word “distance” is displayed. He stared at this word for 1.14 seconds. After that, 

he directed his gaze toward the middle of the inclined plane (dot 1 in Figure 2a) for 

0.10 seconds. Once the ball began to move, Yuval followed its trajectory, looking at 

three different locations (dots 2-3-4 in Figures 2a, b, and c). His fifth gaze (dot 5 in 

Figure 2d) anticipated the ball’s movement along the inclined plane, suggesting that 

Yuval was predicting where the ball would go next. In other words, Yuval’s gaze 

followed the ball’s positions, suggesting that he started covarying time passed and the 

distance travelled. SRI could not help to validate this interpretation.  
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Figure 2: a) Yuval looks first at the center of the inclined plane (dot 1) and then 

at the ball as it moves (dot 2); b) and c) Dots 2 and 3 suggest Yuval was focused 

on the ball; d) In dot 5, Yuval anticipates the ball’s movement.  

At second 3.17, Yuval shifted his gaze to the graphical representation on the right. 

First, he focused on the middle of the graph (Figure 3a), where his fixation lasted for 

0.10 seconds. He then moved his gaze to the far right of the graph, maintaining his 

focus there for 0.50 seconds. At this moment, the simulation replayed, and Yuval 

redirected his gaze to the last part of the inclined plane, which he observed for 0.70 

seconds. Shortly thereafter, he shifted again to the graphical representation. This rapid 

switching between the two representations suggests that Yuval understood the 

dynamics of the ball but still needed to interpret the graphical representation and so 

enact a conversion. At second 7.12, while watching the stimulus for the third time, 

Yuval followed the time-distance graph with his gaze from start to finish (Figure 3b). 

Shortly after that, he focused his attention on the label of the s-axis (Figure 3c). At 

second 15.26, Yuval read the task instructions for approximately 14 seconds.   

 

Figure 3: a) Yuval focused on the 

middle of the graph; b) followed the 

time-distance graph; c) focused on 

the s-axis label. 

At 29:06, he focused his gaze first on the s-axis label, then on the horizontal axis (t-

axis from now on) label (time), repeating this movement twice. While examining the 

axes’ labels, Yuval concluded, “Okay, the graph represents the distance-time 

relationship.” As he pronounced the word “time,” he shifted his gaze along the t-axis 

from right to left before returning to the s-axis label. The following sentence, “As time 

passes, the distance increases”, can be interpreted as an expression of the student’s 

covariational reasoning, and in particular a gross coordination given that he 

qualitatively expresses the co-variation of the two quantities. However, the analysis of 

the student’s gaze plot, which follows the entire graph, and the subsequent verbal 

explanation, suggests a smooth continuous covariation. Yuval was not only satisfied 

with such a qualitative covariational description of the graph but added justification for 

why the graph is a curve, “because the ball accelerates,” so engaging in a conversion 

between the graph and the phenomenon simulation. He then looked at several values 

on the s-axis, moving from the bottom to the top. He continued, “We can see that the 

graph is increasing, but not in a straight line,” and followed the graph with his gaze in 

the same manner as shown in Figure 3b. Such elaboration was confirmed by the SRI. 
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CONCLUDING REMARKS 

This short episode, taken from a longer experiment and a larger project, aims to explore 

how students use calculus concepts, such as covariation, to interpret physical 

phenomena, utilizing eye tracking as a methodological tool. The study shows how a 

student engages with multiple representations (a dynamic simulation, a static 

representation and a graph) to grasp the functional relationship between time and 

distance as a dynamic relationship. In the case discussed here, the student began his 

exploration by focusing on the provided dynamic simulation to understand the graph 

representing the motion of a ball. Through the analysis of the student’s gaze, a 

connection was revealed between the dynamic object and the labels on the axes of the 

Cartesian coordinate system. In addition, our analysis revealed that the analyses of 

covariational reasoning through verbal language or eye movements are non-redundant 

with respect to each other. This confirms that such semiotic resources cannot be 

considered in isolation to achieve a full understanding of the investigated cognitive 

process (Bagossi et al., accepted).                                
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Developing real world problems in Mathematics for tertiary students of other disci-

plines requires some knowledge in the other discipline. What is an authentic problem 

in this context, and can an LLM (Large Language Model) be an effective helper in 

this task? 

Keywords: Mathematics for other disciplines, reality problems, Artificial Intelli-

gence.  

SCI-PROBLEMS 

Let us consider a scientific discipline, which we will call  , different from Mathemat-

ics; and suppose that we want to teach a subset   of the mathematical world to stu-

dents whose main interest lie in  . In order to avoid disengagement, we want the stu-

dents to perceive a utility-value of   through modelling in  . Mathematical model-

ling modelling in the discipline S is a “process consisting of structuring, generating 

real world facts and data, mathematising, working mathematically and interpret-

ing/validating” (Niss et al., 2007). We will be interested mainly in the map      , 

both since it appears to be the most relevant in a Mathematics class, and by analogy 

to translators, who usually work translating into their mother tongue and not out of.  

Carotenuto et al. (2021) define word problems as a literary genre characterised by: 

I) a narrative component that introduces and describes the context and the characters; 

II) an informational component giving the information needed to solve the problem; 

III) the question component. 

This is an inclusive definition, which includes real life problems (including most 

mathematical modelling), as opposed to the one of, say, Kaiser (2017) where word 

problems are defined as those whose solution is only important in the school context.  

We now define a sci-problem     as a word problem relative to  , which needs 

tools from   to be solved. 

A sci-problem could be a veil in front of a standard calculus exercise where the map 

      is a matter of a “simple” semiotic transformation (Figure 1) or it could be a 

problem (Figure 2) where the mere definition of the map   would be both problem-

atic and most likely different between members of the   community of practice and 

members of the   community of practice (Rogovchenko & Rogovchenko, 2023). 

A CLASSIFICATION OF SCI-PROBLEM 

Science-fiction is another literary genre related to science, and their relationship can 

be classified on the spectrum of hard and soft science-fiction. 
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Hard science-fiction might be defined by “its relationship with science” which “pro-

vides the illusion of both realism and rationalism.” It’s a sub-genre in which authors 

“need not to think [the science] likely to be true; only that it should not compromise 

fidelity to facts for purposes of narrative drama or, if it does, that this should happen 

in such a way that the reader does not much notice” (Cramer, 2003).  

Soft science-fiction, on the other hand, is “science-fiction in which the scientific ele-

ments are relatively unimportant to the story” (“Soft Science Fiction”, 2007). 

Figure 1: Soft sci-problem [1] 

Figure 2: Hard sci-problem (Harte, 1988) 

Hard sci-problems 

A hard sci-problem will be a sci-problem where science provides the illusion of real-

ism, the setting should not compromise fidelity to scientific facts for didactical pur-

poses or, if it does, this should happen in such a way that the student does not much 

notice. An example is in Diagram 2: we do not know if the numbers mentioned were 

collected by an actual field experiment or if they were made up by Harte, what mat-

ters is that the student would not notice the difference. 

Designing a hard sci-problem     requires knowledge not only of the mathemati-

cal content   and of its relative pedagogical content knowledge, but also of S. This 

usually require “the development of interdisciplinary subjects taught by an interdisci-

plinary team” (King et al., 2023). 

A hard sci-problem     will appear, to a student, as a problem in  —i.e., a prob-

lem that an actual scientist in   might encounter in her scientific endeavour—which 

requires   techniques to be solved. 

                    

The concentration      of a drug in the bloodstream (measured in mg/L) as a function 

of time   (in hours) after administration is given by the formula:  

1. Find the time      at which the drug concentration reaches its maximum value. 

2. Compute the maximum concentration      . 

3. Discuss the practical meaning of      and      in the context of drug administra-

tion. 

 

Driving across Nevada, you count 97 dead but still easily recognizable jackrabbits on a 

20 km stretch of Highway 500. Along the same stretch of highway, 28 vehicles passed 

you going the opposite way. What is the approximate density of the rabbit population 

to which the killed ones belonged? 

 

58



  

Soft sci-problems 

A soft sci-problem will be a sci-problem in which the science is irrelevant to the 

story. In the example of Figure 1 we see a stereotypical scholastic world problem. 

Designing a soft sci-problem     does not require much more knowledge about   

than being able to read the mappings     and    : in the case of a first-year 

calculus class, this means not much more than what is taught in high school.  

A soft sci-problem     will not appear, to a student, as a problem in   but a way 

to make an   problem somewhat relevant; in many cases, suspension of sense mak-

ing (Carotenuto et al., 2020) will appear and students will have a hard time on the 

    mapping (see point 3 in Figure 1). 

LARGE LANGUAGE MODELS 

Large Language Models (LLMs) are advanced artificial intelligence systems trained on 

vast amounts of textual data to process and generate human-like language. They operate 

by predicting the most probable sequence of words, enabling applications such as text 

generation, summarization, and question answering. In education, LLMs offer opportuni-

ties for personalized learning, automated content creation, and enhanced interactivity, re-

shaping traditional teaching and learning paradigms. [2] 

Despite the shortcomings of LLMs—hallucinations being a major problem [3]—

ChatGPT has adequate abilities in semiotic transformations, including the creation or 

adaptation to different cultural contexts of simple world problems (Kwon, 2024). 

ChatGPT 4o is similarly adequate in creating simple soft sci-problem     as long 

as the user has a cursory knowledge of   : 

User: I need to write an exercise for students in my Calculus course where they calculate 

the maximum of a function on       , but the function should be pre-

sented as the concentration of a drug in the bloodstream. 

Assistant: Here’s an example of an exercise you can propose: [text with parameters] 

User: Add specific values. 

Assistant: Here’s the exercise rewritten with specific values: [text of Figure 1] 

On the other hand, ChatGPT might be able to create a hard sci-problem    , but 

writing the necessary prompts requires a knowledge of   like the one required to de-

sign such a problem.  

BUILDING WORLDS 

The creation of (alien or futuristic) world is a big component in hard sci-fiction: au-

thors have to devote themself to the creation of an ecology, an institutional and a 

technological framework, possibly even a language. A book writer might spend years 

of research building such a world. Similarly, a calculus instructor   might spend 

years studying for a Bachelor in   and then be ready to write a hard sci-problem 

   : in most cases, this is completely unfeasible, and she would need to rely on 
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help from a colleague   in  , with both willing to spend enough time to develop a 

translation framework     and    . Using the ATD (Anthropological Theory 

of the Didactics) framework,   is helping   attaining  , i.e. the content knowledge of 

  required to be an adequate designer of hard sci-problem    .  

Our research question is then: can an LLM play the role  ? That is, can an LLM help 

  investigate existing  -problems    and build an appropriate hard sci-problem   ? 

The answer to the question is yes: ChatGPT 4o can be an effective helper as long as 

the user   is able to convince the LLM   to be of help. Indeed,   does not seem able 

to generate directly anything more than a soft sci-problem, but it is able to look for 

relevant references and explain its content (see Rizzo (2024) for the whole transcript). 

User:  Now I need to write a problem, still about mathematics, for my students. I’d 

like to use one of the models used in botany to connect leaf inclination to 

the amount of solar energy absorbed. Can you help me? 

Assistant:  Certainly! In botany, the inclination of leaves and the amount of solar ener-

gy absorbed can be modeled using mathematical concepts that relate angles 

to light intensity, often relying on the cosine of the angle of inci-

dence between sunlight and the leaf surface. Below, I’ll suggest a model 

and a problem for your students.   

[Produces a soft sci-problem with detailed solutions] 

User:  Do you know of any references in the literature to problems of this nature? 

Assistant:  Certainly! The orientation of leaves, known as Leaf Angle Distribution 

(LAD), significantly affects the absorption of sunlight by plants. Mathemat-

ical models describing this relationship are crucial for understanding and 

predicting the photosynthetic efficiency of plant canopies.  

[Proceeds with an explanation of Leaf Angle Distribution, and presents a 

couple of real relevant references] 

In the first interaction   does not help   by producing no relevant answer   . A sec-

ond interaction, on the other hand, goes in the right direction:   produces relevant 

answers (there are mathematical models on the leaf angle distribution), explains 

enough of   with a language comprehensible to  , and offers resources for additional 

exploration of relevant cases of   . Now   has to read the resources (eventually go-

ing back to   for help understanding a concept in  ) and use his Pedagogical Content 

Knowledge (PCK) to isolate a problem which is relevant to his goals. 

CONCLUSION 

ChatGPT 4o can be effectively used to help in the design of modelling problems in a 

scientific domain, say botany, essentially unknown to a calculus instructor.  

This requires, though, the instructor to possess a sufficient level of Technological 

Pedagogical Content Knowledge (TPACK) to interact in a fruitful way with the 

LLM; and of PCK to recognise in the produced botanical literature elements conduc-

tive for a modelling problem relevant to his didactical goals. 
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This paper aimed to investigate the impact of incorporating digital technology, 

specifically Maple Learn, on the development of mathematical thinking in a calculus 

course offered by a large university in Toronto. Through activities with four 

participants, we explored how Maple Learn’s functionalities support learning in 

undergraduate calculus, addressing a gap in existing research. We discussed three 

key objectives: exploring Maple Learn’s functionalities for mathematical thinking, 

examining the relationship between these functionalities and the context of calculus, 

and analyzing the experiences and perspectives of learners who integrate Maple 

Learn into their practices to enhance engagement and understanding of calculus, 

both in academic and real-world contexts. 

Keywords: Calculus, Maple Learn, Mathematics Education, Functions.  

INTRODUCTION 

The rise of new digital technologies has led to new ways of engaging with 

mathematics both as a scientific discipline and as a school subject (Hoyles, 2018). 

Key to understanding these new ways is the development of mathematical thinking – 

the cognitive process of understanding, analyzing, and synthesizing mathematical 

concepts and processes to solve problems and make informed decisions (Schoenfeld, 

1994). This thinking involves logical reasoning, critical analysis, and the ability to 

generalize and adapt concepts to various contexts. Integrating digital technologies 

requires a shift towards strategies that encourage understanding the world through a 

mathematical lens (Jarvis et al, 2022).  

In this project, we will examine the use of digital technology (mathematical 

software) for the development of mathematical thinking. While mathematical 

software provides the means to carry out operations, mathematical thinking is the 

overarching skill that empowers individuals to grasp the essence of mathematical 

concepts, approach problems creatively, and select and apply the appropriate 

formulas and procedures in a context to develop innovative solutions. While it is 

clear that students can benefit from access to instruments that effectively promote 

mathematical thinking through mathematical software, little research has examined 

the technical functionalities of such platforms.  
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This paper also investigates the calculus across the contexts in which mathematical 

thinking is developed. In broader terms, we differentiate two contexts of calculus: 

formal and non-formal. Formal promotes the study of mathematical theories and 

structures, typically employing axiomatic systems, formal proofs, and symbolic 

notations. Whereas, non-formal encompasses that emphasizes the ability to interpret, 

analyse, communicate, and apply basic mathematical concepts and skills to solve 

everyday problems. In light of these considerations, this research delves into the 

experiences of learners as they navigate the development of mathematical thinking 

through the calculus course offered in their undergraduate programs, contributing 

valuable insights to the broader discourse on digital technology’s role in calculus 

across different contexts.  

CONCEPTUAL FRAMEWORK 

The conceptual framework of this research is supported by the multifaceted nature of 

the calculus I course offered by a large university in Toronto, Ontario (Canada). This 

serves a wide range of purposes, including reinforcing high school mathematics. 

Many high-school math courses (even Advanced Placement and other “university-

level” courses) focus on memorization and computations. By contrast, university 

courses focus on understanding why methods work and what the concepts mean. 

More emphasis on understanding over memorization to sharpen students’ problem-

solving skills. The central focus of this study is the incorporation of technology in 

Calculus I, a course offered in the first year of undergraduate programs at the 

university, to support the development of mathematical thinking. It also explores the 

experiences and perspectives of students who use technology to learn various 

Calculus concepts. In this course, students gain a deeper understanding of how to 

apply Calculus concepts to the social, biological, and physical sciences. More 

broadly, we distinguish four contextual domains for this Calculus I course: Social 

Science, Applied Science and Engineering, Hard Science, and Life Science. Hard 

science we considered under a formal calculus context. Social science, Applied 

science and Engineering, and Life science are considered under a non-formal calculus 

context. Unsurprisingly, calculus in these four contexts receives little attention in 

research regarding the integration of digital technologies. This study focused 

specifically on both formal and non-formal calculus contexts, delving into the realm 

of mathematical thinking and examining how technology (Maple Learn) integrated it 

into the calculus for the first-year undergraduate university students. Additionally, we 

highlight the need for a systematic framework to understand each context that offers 

unique mathematical ideas and representations, giving rise to distinct forms of 

mathematical thinking, which the project seeks to explore and understand the 

affordances and obstacles of Maple Learn in these courses. Finally, the project can 

help improve the quality of mathematics education by providing evidence-based 

recommendations on the use of mathematical software in mathematics classes. 
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CONTEXT AND METHODS 

To answer the research questions, the method employed in this paper involves 

offering activities based on Maple Learn and the exponential function. The main 

objective of the study was to assess whether students’ problem-solving skills can be 

enhanced with the help of Maple Learn. The exponential function, a topic students 

have already learned in high school, was chosen to focus on understanding why 

methods work and what the concepts mean. The activities were conducted over three 

days, with one hour allocated daily. On the first day, students were introduced to 

Maple Learn, learning how to access and use the software. On the second day, they 

worked on an exponential function activity using paper and pencil. On the final day, 

they completed the same activity with the help of Maple Learn. The activities 

explored various aspects of Maple Learn’s functionalities, focusing on how they 

support mathematical thinking, their relationship to calculus concepts, and the 

experiences and perspectives of learners using the software to enhance engagement 

and understanding of calculus in both academic and real-world contexts. AS this 

study is in its initial stages, it was conducted with four students from the Calculus I 

course. We asked the students to describe how they explored problems involving 

exponential functions using Maple Learn. Each student submitted a work file that 

they used during problem-solving with the help of Maple Learn. An exploratory 

causal path analysis was performed to assess the effect of the students’ use of Maple 

Learn functionalities on their cognitive processes specifically, their ability to 

understand, analyse, and synthesize mathematical concepts and procedures to solve 

a problem and make informed decisions (Jo¨reskog & So¨rbom, 1985).This paper 

focuses on analyzing two sets of questions related to: 1) How well does Maple Learn 

align with its intended goals for use in calculus I classes? 2) Students’ understanding 

of calculus topics and the software’s effectiveness in enhancing their learning. It 

seeks to answer the following research question: How can mathematical software 

support the learning and understanding of concepts in Calculus I? 

FINDINGS  

The first research question examined whether students utilized Maple Learn’s 

functionalities to support mathematical thinking, particularly within the context of 

Calculus problem solving. Maple Learn offers five key functionalities designed to 

align with various levels of mathematical understanding: analyzing, planning, and 

verifying, among others. Analysis of student activity revealed that participants 

engaged extensively with the platform’s mathematical outputs and operations. To 

address the second research question, a control group of students participated in a 
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three-day workshop focused on application problems involving exponential 

functions. Across three structured activities, students engaged with three distinct 

problems related to this topic. During the workshop, students recorded the problems 

they encountered, the strategies they employed, and the solutions they independently 

derived. These records served as a rich source of data reflecting students’ learning 

experiences and their evolving understanding of exponential functions. Descriptive 

analysis of the data suggested that students responded positively to the integration of 

numerical and visual elements within Maple Learn. These features appeared to 

enhance their conceptual grasp of the mathematical content. Furthermore, students’ 

work demonstrated improvements in their ability to analyze problems and devise 

effective solution strategies. The findings suggest that engagement with Maple 

Learn supported the development of analytical skills and fostered a stronger capacity 

to identify and implement appropriate solution pathways. 

In conclusion, the study indicates that the use of Maple Learn contributed to 

increased student engagement and active participation in the learning process. 

Students not only attempted to replicate graphical representations but also 

demonstrated heightened interest in exploring the properties and applications of 

exponential functions. Moreover, the platform promoted collaborative learning, as 

students frequently engaged in reviewing and analyzing one another’s work. This 

collaborative process provided valuable opportunities for peer learning, critical 

thinking, and deeper conceptual understanding. 

DISCUSSION AND CONCLUSION  

The results of the paper highlight a notable trend: the integration of technology, such 

as Maple Learn, within calculus courses is crucial for developing mathematical 

thinking. As society becomes increasingly quantitative, problem-solving situations 

demand a broader familiarity with mathematics. Mathematical thinking involves 

adopting a perspective that views the world through a mathematical lens and seeks 

logical explanations. Students who grasp the elements of mathematical thinking can 

independently apply these skills to understand the mathematics they encounter. In 

the Greater Toronto Area (GTA), post-secondary education systems impose tight 

time limits on completing mathematics tests, encouraging fast-paced work. 

However, real mathematics takes time, and much of the process may not initially 

seem like doing math, as the focus is on thinking mathematically rather than merely 

applying standard techniques to solve problems. The paper suggests that integrating 

technology like Maple Learn into Calculus I  enables students to build a strong 

foundation in applying calculus concepts across various contexts. By fostering 

mathematical thinking, this approach encourages deeper understanding and helps 
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students learn through reasoning rather than relying solely on rote memorization in 

their calculus classes. 
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This work presents the genesis of Math-chiavelli, a card game designed to support 
university students who struggle with calculus, particularly in "weak" mathematics 
courses such as Geological Sciences. The design choices are articulated through the 
framework of mathematics education theory to enhance students’ understanding of 
characteristics and graphical representations of real-valued functions of a real 
variable. By facilitating the translation between different semiotic representations, 
Math-chiavelli encourages strategic decision-making, peer feedback, and 
collaborative learning. This game-based approach aims to build coherence in students' 
mathematical reasoning, while making calculus more accessible and engaging. 

Keywords: calculus, semiotic registers, game-based learning, peer feedback, 
graphical representations. 

INTRODUCTION AND RATIONALE 

In Italy, about one in five students drops out of university within the standard duration 
of their degree, with scientific disciplines often experiencing higher dropout rates 
(ANVUR, 2023). A key factor contributing to this is the mathematics course, a 
mandatory requirement also in degree programs such as Geological Sciences or 
Pharmacy, typically chosen by students who do not have a strong affinity for 
mathematics. In these programs, the exam syllabus is primarily focused on calculus, a 
subject many students find overwhelming. Failing the maths exam is a common reason 
for dropout (Ellis et.al., 2014). Calculus, however, plays a crucial role in a range of 
scientific disciplines: biologists, chemists, economists, and geologists apply calculus 
in different ways, using its concepts to model phenomena, reason quantitatively, and 
support argumentation within their fields. Therefore, it becomes paramount that 
students in these degree programs who attend calculus courses not only pass their 
exams but also develop the mathematical reasoning necessary for their future careers. 
Several studies investigate the use of games for teaching calculus concepts, exploring 
their potential to enhance engagement and comprehension (Ahmad Bakri et al., 2020; 
Szilágyi & Körei, 2022). Following this line, a researcher in mathematics education 
(the first author) and a researcher in mathematical analysis who teaches calculus to 
Geology students (the second author) joined forces to develop Math-chiavelli, a card 
game designed to make mathematics more accessible and engaging for students who 
did not choose mathematics as their primary educational focus. The educational 
objective of the game is to support students in conceptualising and systematising 
mathematical ideas they are already familiar with but may struggle to apply in practice. 
It aims to enhance their conceptual understanding of calculus by fostering key skills 
such as interpreting (i.e., reading functions properties from) and constructing graphs of 
real-valued functions of a real variable, as well as promoting coherence in reasoning. 
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THEORETICAL BACKGROUND 

In the research on learning and teaching calculus, several frameworks provide insights 
into how students can better engage with and understand calculus concepts. Following 
Bressoud and colleagues (2016), we consider Duval's theory of semiotic representation 
(1995) as focal to investigate students’ cognitive development. Duval's theory focuses 
on the relationships between signifiers structured into semiotic registers and the 
mathematical concepts they signify. According to Duval, mathematical understanding 
is constructed through the interplay of different semiotic registers (verbal, graphical, 
symbolic, and numerical) each with its own rules and characteristics. Two core 
cognitive processes are central to this interplay: treatment and conversion. Treatment 
refers to manipulating representations within the same register (e.g., solving an 
equation algebraically), while conversion involves translating between different 
registers (e.g., moving from a verbal description of a function to its graphical 
representation). Both processes contribute to learning, but conversions are particularly 
effective in fostering a conceptual understanding of mathematical concepts, as they 
enable students to navigate efficiently between different forms of representation. 

In addition to Duval's semiotic theory, we build on gamification and peer assessment 
as theoretical perspectives for designing an educational game. Gamification in 
education incorporates game design elements such as competition, strategy, rules, 
decision-making to enhance student motivation and engagement. (Deterding et al., 
2011). Peer assessment, where students evaluate each other’s work and provide 
feedback, fosters collaborative learning and self-reflection (Topping, 1998). 

Given these theoretical choices, the design process is guided by the RQ: How can we 
design a card game fostering students’ conceptual understanding of calculus?  

DESIGNING THE GAME 

We designed Math-chiavelli as the mathematical version of Machiavelli, a Rummy-
derived card game, widely popular in Italy, named after the Italian Renaissance 
Florentine diplomat Niccolò Machiavelli. The game is conceived to help students to 
build coherence in their mathematical reasoning, understood as the ability to 
consistently connect characteristics of functions of a single real variable and in 
understanding and interpreting the related graphs. Students play independently, 
fostering autonomy in reasoning, though the game also allows for a follow-up teacher 
intervention to consolidate learning. Math-chiavelli is designed to be played by 2 to 6 
players with two complete decks of 75 cards. The cards feature function characteristics, 
presented in verbal or symbolic form and divided into five colour-coded categories. 
The full deck of cards can be seen here; in the cards expressed in a verbal register, it is 
always implied either the function has, or the function is. 

Games rules 

● The dealer, chosen at random, deals 13 cards to each player in clockwise direction. 
After dealing, the remaining deck is placed in the centre of the table 
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● The player to the left of the dealer goes first, and play continues clockwise 
● There are four actions that a player can play: 

Action 1: Play a valid combination of cards on the table, i.e., at least three cards 
with coherent function characteristics that either share the same colour (Fig. 1a), 
or have all different colours (Fig. 1b), completed by a graph of a function with those 
characteristics sketched by the player 
Action 2: Add one or more cards with new characteristics and compatible colours 
to existing combinations on the table, if the sketched functions satisfy the new 
characteristics 
Action 3: Remove or rearrange cards from existing combinations to create new valid 
combinations that include one or more cards from the player's hand 
Action 4: Draw a card if no other action is possible and wait for the next turn 

● Each player must play at least once action 1 before playing action 2 or 3 
● Players may not remove any cards already on the table 
● Players who make a mathematically wrong move must draw a card and wait for the 

next turn 
● The player who manages to play all the cards in his hand wins the game. 

 

Fig. 1: Examples of valid combinations  

Design choices 

We wanted to design a meaningful game both from a mathematics education 
perspective and in terms of the players' experience. This goal guided our design 
choices, some made a priori, based on the theoretical framework and educational needs, 
while others emerged a posteriori during play sessions with fellow researchers. 

The first a priori choice was about the rules of the game, inspired by the original game 
with additions aimed at igniting cognitive processes. Constructing a valid combination 
(action 1) requires players to understand the function characteristics described in the 
cards and make coherent selections, while the added graph mobilises Duval’s (1995) 
conversion process from the cards’ verbal/symbolic description into a graphical 
representation (the sketched graph). This sketching step not only should reinforce 
students’ understanding but also engage their creativity, as they actively construct a 
visual representation rather than simply reading properties from an existing graph. 
Since graph interpretation is already addressed in action 2, we found it more 
compelling for action 1 to challenge students to invent the graph themselves. Adding 
to existing combinations (action 2) requires analysing the current graphical 
representation and determining how a new card integrates into it, which involves 
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converting from the graphical to the verbal/symbolic register. Removing or rearranging 
cards to form new valid combinations (action 3) involves conversions in both 
directions, moving between verbal/symbolic and graphical representations to check 
that the graph satisfies all the conditions in the cards. These rules leverage gamification 
principles such as strategy, and decision-making to engage students while ensuring that 
every decision fosters their conceptual understanding of function properties. 

A second a priori design choice was whether to require players to produce a function 
graph, its analytical expression, or both. The decision to focus exclusively on graphs 
was based on educational needs and gamification principles. For the target audience, 
creating and interpreting graphs is a critical skill that the game is designed to develop. 
Moreover, graphs are better suited to the fast-paced nature of the game: they allow for 
quick evaluation by players and for a teacher’s follow-up intervention that can focus 
on producing the analytical expressions of the functions involved. These design choices 
imply also that all players check the coherence between a graph and the cards played 
by others. This process can mobilise peer assessment and, once again, draws on 
Duval’s (1995) conversions between semiotic registers, as players translate 
mathematical information across different representations to ensure coherence. This 
aims at deepening engagement with the content, and fostering dialogue and a clearer 
understanding of errors, ultimately strengthening conceptual knowledge.  

Educational needs and gamification principles also shaped the final a priori choice 
about the card topics and content, covering domain, global properties, zeros, sign, 
limits, asymptotes, behaviour, extrema and singularities. Concavity and inflection 
points were excluded to align with the mathematics degree Calculus course syllabus 
taught by the second author, as they add complexity without significant benefits for the 
target audience of the course (and game). Card content was selected to widen students' 
example space (Watson & Mason, 2005) and ensure that each card can combine with 
some others in the deck to prevent the game from getting stuck. The cards formulations 
were also carefully designed to prompt conversions between representations and to 
avoid misconceptions that would be challenging to address without teacher oversight, 
as students are expected to play independently. 

All a-posteriori design decisions aimed to improve the game's mechanics. The first key 
change was colour-coding the cards into five categories and limiting valid 
combinations to differently coloured cards. Without this structure, players tended to 
create overly complex combinations using many cards. Later, we allowed same-colour 
combinations to promote reflection on mathematical coherence. Finally, introducing a 
penalty for mathematically wrong moves proved crucial for fostering peer evaluation. 

CONCLUSION 

As educators, it is essential to bridge the gap between traditional calculus teaching and 
how calculus is understood and applied in various scientific disciplines, shifting the 
focus from mastering abstract concepts to scaffolding learning in ways that are 
functional to their future professional needs. Going back to our RQ, we believe that 

70



 

 

 

adapting a popular game through the incorporation of mathematical content and rules 
that ignite cognitive processes like Duval’s conversions (1995), Math-chiavelli 
leverages gamification principles to create a low-stakes environment that fosters 
learning, strategic decision-making, and immediate peer feedback, all while nurturing 
coherence in students' mathematical reasoning. We are currently experimenting with 
the game, and we look forward to sharing insights with the CalcConf community 
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Multivariable limits play an important role in university mathematics courses 

addressed to mathematicians and non-mathematicians. Using the Onto-semiotic 

Approach, we carry out a comparative analysis of three university textbooks used in 

different degrees: mathematics, engineering, and economics. We identify differences 

in the different primary objects (situations, languages, propositions, procedures, and 

arguments). Our findings illustrate a rather different treatment of this concept among 

these degrees and suggest further research in this line. 

Keywords: calculus, multivariate limit, textbook analysis, Onto-semiotic Approach. 

INTRODUCTION 

Calculus plays a very important role in many different courses addressed not only to 

mathematicians, but also to other non-mathematics professionals such as economists 

or engineers (Biza et al., 2022). In fact, “multivariable functions play an essential role 

in science, technology, engineering, and mathematics (STEM), as well as in other fields 

of knowledge” (Borji et al., 2022, p. 1). Thus, there is an increasing amount of research 

about different aspects of the teaching of multivariable calculus and, in particular, of 

multivariable limits (Martínez-Planell & Trigueros, 2021). 

In this context, we can consider the following research question: What are the 

differences in the treatment of multivariable limits among different university degrees? 

Here, we make a first approach to this question by restricting our attention to textbook 

analysis (Son & Diletti, 2017). Furthermore, we focus our research on three different 

university degrees: mathematics, computer engineering, and economics (Bailey et al., 

2024). Thus, our main goal is to analyze the presence and treatment of multivariable 

limits in textbooks used in each of these university degrees. 

THEORETICAL FRAMEWORK 

Textbooks are a very important source of information in the relationship between 

research and teaching. More specifically, textbook analysis is a relevant topic for both 

teaching practice and research in mathematics education (Schubring, 2022). In 

particular, Randahl (2012) points out that there is a need for more research on 

university level mathematics textbooks. 

The notion of limit in textbooks has been studied, for pre-university and university 

levels. In the case of pre-university textbooks, some authors, such as Arnal-Palacián et 

al. (2024) for different types of limits — sequence and function in one variable —, 

point out that they present both definitions and examples, as well as different registers 

of representation, the predominant one being the verbal register. For calculus textbooks 

used in university courses, Hong (2023) examined how the notion of limit in one 
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variable is introduced, and what examples and problems are presented. For the 

particular case of the limit in several variables, Thompson and Wiggins (1990) point 

out that the presentation of this notion in textbooks has evolved over time. Attention 

began to be paid to the notion of the limit from 1950. In the 1970s, a good part of 

textbooks included a formal definition of the limit, and it is from 1980 onwards that 

many authors chose to treat the limit intuitively in the main body of the text. In all these 

periods, the more rigorous the definition was, the more examples and exercises were 

added. 

This work is based on the Onto-semiotic Approach (OSA, see Godino et al., 2007). 

The theoretical constructs elaborated in this model are articulated in practices, objects 

and processes, establishing six mathematical objects that are considered primary. All 

of them can be found in mathematics textbooks, and they are: problem situations (tasks, 

exercises or problems that may be of an intra- or extra-mathematical nature), language 

(terms, expressions, notations or graphics, in their different registers of representation), 

concepts (definitions or descriptions), propositions (statements about concepts or 

properties of the mathematical objects involved), procedures (algorithms, operations 

and calculation techniques, which make it possible to solve the problem-situation), and 

arguments (statements that explain and validate the propositions or procedures). 

The existing textbook research from the perspective of the OSA is usually oriented 

towards primary and secondary education. At a university level, studies in this line are 

scarce. One example is the work by Galindo-Illanes and Breda (2022) related to the 

notion of derivative in the context of engineering. Sol and Larios-Osorio (2021) carry 

out the only research focused on the notion of finite limit of a function at a point, 

without specifying the professional orientation of the considered books. 

METHOD 

In order to address our research goal, we conduct a content analysis of textbooks (Rezat 

& Sträßer, 2015) in which we adopt a qualitative perspective, with a descriptive and 

exploratory approach.     

Regarding the selection of our textbooks sample, we first determined which Spanish 

public universities offer the considered degrees. Then, for each degree and university, 

we searched for the academic year 2024-2025 teaching guide of the subject in which 

multivariable calculus is introduced for the first time. This led to the consideration of 

27 teaching guides for the mathematics degree, 29 for the computer engineering degree, 

and 35 for the economics degree. Then, the bibliography was reviewed for each 

teaching guide, and all the recommended manuals were listed and counted. 

For this paper, we decided to analyze the most frequently recommended textbook in 

each degree that covers the topic of multivariable functions. Namely: 

● Mathematics degree: “Mathematical analysis” by Apostol (1981). This book was 

recommended by 13 out of the 27 teaching guides. 
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● Computer engineering degree: “Calculus” by Strauss et al. (2002). This book 

was recommended by 5 out of the 29 teaching guides. 

● Economics degree: “Essential mathematics for economic analysis” by Sydsaeter 

et al. (2021). This book was recommended by 24 out of the 43 teaching guides. 

We have analyzed the most recent English editions available for us.  The unit of 

analysis was the section of the book in which multivariable limits were introduced for 

the first time. The treatment of this topic was analyzed from the perspective of the OSA 

(Godino et al., 2007), focusing specifically on the primary objects that emerge in the 

mathematical practice evidenced in the textbooks under consideration: Situations, 

language, concepts, propositions, procedures, and arguments.  

RESULTS 

The situations proposed in the three books are mostly oriented towards the applicability 

and role of multivariate limits in the resolution of intra-mathematical situations. The 

three books use verbal and symbolic language, usually presented in a coordinated 

manner. However, while the books corresponding to the mathematics and engineering 

degrees also include the use of graphic language, this is not the case for the economics 

textbook, which does not include the graphic register in relation to the notion of the 

limit in a multivariable function. Furthermore, we note that the mathematics textbook 

is predominantly symbolic and verbal, while the engineering textbook is more 

symbolic and graphic. 

From a conceptual point of view, the definition of the limit of a function of several 

variables is approached in two different ways. In the mathematics book, the definition 

considers functions between metric spaces, while the engineering and economics books 

only consider the concept of limit for functions between ℝn and ℝ. These different 

approaches impact the associated concepts that have to be covered by the books. Only 

two of the books take procedures into account: the mathematics and the engineering 

book. The mathematics book uses procedures linked to the definition of limit and 

propositions previously presented, while the engineering book limits itself to using 

trajectories as a procedure to arrive at the non-existence of limit in each of the solved 

problems presented. 

Two books contain propositions: the mathematics and the engineering book. We 

identify two types of propositions. Some of them are related to theoretical aspects and 

appear only in the mathematics book (sequential criterion, uniqueness of limit, etc.). 

Other propositions are important from the point of view of computational aspects of 

the limit. They appear in both books, and they deal with limits and operations or with 

some kind of criteria for determining the non-existence of a multivariable limit. These 

propositions play a more central role in the engineering book and, in the case of the 

mathematics book, their introduction forces the author to abandon his general abstract 

approach. Finally, two of the books contain arguments, although the mathematics book 
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makes extensive use of argumentations, since it contains many formal proofs. These 

proofs follow a deductive approach and they are usually based on previously 

introduced definitions and results, but also on previous knowledge considered to be 

“elementary” by the author. On the other hand, the engineering book lacks formal 

proofs, so it only presents some kind of argumentation in exercises related to the non-

existence of certain limits, in which the previously introduced criterion is used. 

DISCUSSION 

The situations identified in the three textbooks highlight strictly intra-mathematical 

applications. The mathematics textbook emphasizes the demonstration of propositions 

and briefly introduces some techniques of limit calculation in an exercise left to the 

reader. The engineering textbook, besides considering this last situation, also 

contemplates the study of continuity. The economics textbook presents the concept of 

limit in a multivariable function, but there is an absence of propositions, procedures 

and arguments on this notion, which we attribute to the existing focus on the continuity 

of a multivariable function. The three textbooks vary in the registers of representation, 

like in the analysis of pre-university textbooks for limits of one variable (Arnal-

Palacián et al., 2024). The definition of multivariate limit is addressed, on the one hand, 

by considering functions defined on any metric space (mathematics textbook) and, on 

the other hand, for a specific family of functions (engineering and economics 

textbooks). We identify procedures related to the multivariate limit in mathematics and 

engineering textbooks. It must be said that, in relation to concepts and problems, unlike 

Thompson and Wiggins (1990), we found that an increase in the rigor of the definition 

does not imply a greater number of examples and exercises in the book.  

Also, while accessing the sample, we have noticed some remarkable differences 

between editions of the same textbook in the sections devoted to multivariable limits. 

This also suggests (Schubring, 2022) that further research on the evolution of the 

treatment of this topic within the various editions of these textbooks could be 

interesting. Finally, after these incipient results, we think that it would be worth 

analyzing the practice of university professors of different degrees, to determine what 

primary mathematical objects they link to their teaching of the concept of multivariable 

limit.  
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For students in the U.S., the transition from precalculus to calculus is notoriously 

difficult. We explore the potential causes of this phenomenon through textbook 

analysis from the perspective of APOS Theory. Specifically, we identify broad 

procedural themes in general and applied precalculus and calculus textbook 

examples, and we explore the differences in their process demands. Results show 

significant differences in the processes required by different precalculus-calculus 

tracks. 

Keywords: calculus, precalculus, APOS, textbook analysis, doing and undoing. 

INTRODUCTION 

In the U.S., before students enroll in a calculus course, they must complete a 

sequence of foundational math classes ending in a course called Precalculus. This 

course is seen as a cap to the knowledge students will need to know to succeed in the 

calculus sequence and includes topics such as functions, trigonometry, and even 

complex numbers. Students in general calculus courses are typically STEM majors, 

whereas applied calculus is a course typically reserved for non-STEM majors, such as 

business. As a result, Precalculus courses can vary widely in aims and scope. In this 

system, many students find the transition from precalculus to calculus difficult, and 

students entering calculus are often severely underprepared for the reasoning required 

by university calculus courses (Carlson et al., 2015). Once students enter calculus, it 

often acts as a gatekeeper course, preventing completion of STEM degrees (Weston 

et al., 2019). Some reasons this transition is difficult for students include 

misalignment (Barr et al., 2022) and an absence of foundational reasoning skills 

(Carlson et al., 2015). Our research is motivated by our institutions’ current re-

examination of their precalculus-calculus tracks. Furthermore, it contributes to the 

current conversation in mathematics education research about the impact of 

introductory prerequisite mathematics course sequences on student attrition and 

retention (e.g., Carlson, 2015; Weston et al., 2019). In this paper, we seek to 

understand how differences in general and applied precalculus and calculus textbooks 

may affect students in various tracks of the precalculus-calculus sequence and the 

potential impact of these tracks on student retention. 

THEORETICAL FRAMEWORK  

As a textbook analysis, this study is situated in the cognitive domain of the 

potentially implemented curriculum (White & Mesa, 2014). In other words, we seek 

to understand what potential implications particular textbooks may have on learners 

in the precalculus-calculus sequence, which we define as a track. Since textbooks 
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predominantly convey curriculum to learners in mathematics courses (Fan et al., 

2013), we study the expository examples in precalculus and calculus textbooks.  

We approach this study from the perspective of Action-Process-Object-Schema 

(APOS) Theory, which posits that schema development occurs in four nominal 

stages. Repeated systematic actions become processes. Once computational 

processes become conceptualized by the learner, they form objects. Learners build 

schemas by discerning relationships between various objects (Cottrill et al., 1996). 

Tall (1997) refines the space between the process and object layers of APOS Theory 

by defining a procept, or a process-concept. Tall (1997) defines three procepts for 

calculus: function, derivative, and integral, each with its own “doing” and “undoing” 

processes, which are assumed to be mutually exclusive. 

In this paper, we explore further the notion of doing and undoing in precalculus and 

calculus by removing Tall’s (1997) assumption of mutual exclusivity to determine if 

processes exist that simultaneously require doing and undoing and how this affects 

students in the transition from precalculus to calculus. We answer the research 

questions: (RQ1) What differences exist between calculus and precalculus textbook 

examples’ “doing” and/or “undoing”? and (RQ2) What types of “doing” and/or 

“undoing” are there in calculus and precalculus? 

METHODOLOGY 

We designed this study as a 2x2 matrix of general and applied calculus and 

precalculus textbooks (Stewart, 2016; Sullivan, 2018; Hughes-Hallett, 2014; Denette 

& Kaskosz, 2020), as shown in Figure 1. We considered general and applied 

textbooks to simulate various possible tracks students in the U.S. can take through the 

precalculus-calculus sequence, as illustrated by the arrows in Figure 1. 

 

Figure 1: Study Design. 

From now on, we abbreviate these books as APC, AC, GPC, and GC. For this study, 

we analyzed examples in the exposition of textbook sections using generative coding 

(Saldaña, 2013). We included all the sections in APC and GPC (except the Limits 

chapter in GPC) to simulate a student entering calculus with maximum prerequisite 

knowledge. From GC and AC, we included corresponding sections to simulate a 

common calculus curriculum taught using the two texts. A table containing this exact 
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list can be found at https://tinyurl.com/doingandundoing. We collected the coding 

data, each analyzing one precalculus book and one calculus book as listed in Figure 

1, meeting twice to refine the codebook. To answer RQ1, we determined the relative 

frequency of each code and performed pairwise comparisons described by the edges 

in Figure 1. To answer RQ2, we identified processes appearing in the examples, 

which we then classified as “doing”, “undoing”, “both”, or “neither”. 

RESULTS 

Quantitative Analysis 

The relative frequencies for examples in the four textbooks illustrating doing, 

undoing, both, or neither are listed in Table 1. 

 Doing Both Undoing Neither 

Sullivan (GPC) 0.395 0.091 0.231 0.283 

Denette (APC) 0.432 0.046 0.331 0.191 

Stewart (GC) 0.350 0.420 0.107 0.123 

Hughes-Hallett (AC) 0.507 0.128 0.139 0.225 

Table 1: Relative frequencies of codes in calculus and precalculus texts. 

GPC and APC showed relatively fewer examples utilizing both doing and undoing 

than both AC and GC. Additionally, APC and AC had lower relative frequencies of 

examples demonstrating both doing and undoing than GPC and GC, respectively. 

APC and AC did have higher relative frequencies for examples utilizing either doing 

or undoing processes than GPC and GC, respectively. AC had the highest relative 

frequency of examples demonstrating a doing process, although all four showed more 

examples of the doing processes than the undoing processes. GC has more examples 

utilizing doing and undoing processes than examples showing just doing or just 

undoing.  GPC has the highest relative frequency of examples using neither doing nor 

undoing processes. 

Qualitative Analysis 

From the analysis of the textbook processes, the following themes emerged. (1) 

Evaluating (doing) is the process of substituting values of a variable to arrive at an 

answer. Solving (undoing) is the process of finding the value of a variable. Evaluating 

a function at value(s) of its variable(s) is an example of the evaluation process. 

Solving an equation for    is an example of the solving process. (2) Simplifying 

(doing) is the process of exchanging one algebraic expression for another so that the 

number of objects in the expression decreases. For example, replacing       with   . 

Expanding (undoing) is the process of exchanging one algebraic expression for 

another so that the number of objects in the expression increases. For example, 

replacing    with     . (3) Composition (doing) is the process of combining a set of 

mathematical objects through layering. Decomposition (undoing) is the process of 
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breaking down an object into its constituent layers. A classic example of composition 

is composing a set of functions, while figuring out the functions in a composition is 

an example of decomposition. (4) Forward (doing) and backward conversion 

(undoing) are the transformation of one mathematical object into another such that 

one direction is objectively more difficult than the other. Conversion between 

rectangular and polar coordinate systems is one such example. Converting from polar 

to rectangular coordinates is forward conversion because    and    are presented as 

formulas in terms of    and  , which only require evaluation. Converting from 

rectangular to polar is more difficult, requiring solving inverse trigonometric 

functions, making it a backward conversion. (5) Strategize and execute (both) is a 

process that requires doing and undoing simultaneously. For example, when 

evaluating integrals using substitution, the reader must first make the substitution, 

which requires decomposing the integrand. Then, the integral is evaluated as a 

“doing” process using a table of antiderivatives. Illustrations of each process from the 

textbook examples we analyzed are available at https://tinyurl.com/doingandundoing. 

DISCUSSION 

The results of the quantitative analysis showed that textbooks differ in the frequency 

of the processes they ask students to perform. The jump from low relative frequency 

of examples utilizing both doing and undoing in the precalculus texts to higher 

relative frequencies in the calculus texts may explain some of the difficulty students 

experience when transitioning from precalculus to calculus (Carlson et al., 2015). 

This increase process demand illustrates students are learning not just new concepts, 

but different problem-solving skills. Notably, this trend is present in the applied and 

general sequences. It is also noteworthy that the relative frequencies of examples 

utilizing both doing and undoing processes from APC to GC jumps from 4.6% to 

42.0%. This may provide additional barriers for students switching into STEM 

majors. The jump from GPC to APC is much less severe, 9.1% to 12.8%. 

Misalignment is one of the reasons for STEM retention issues in the U.S. (Weston et 

al., 2019), and our quantitative analysis demonstrates a significant misalignment in 

process demands of precalculus and calculus students. 

The results of the qualitative analysis demonstrated that the notions of “doing” and 

“undoing” as described in Tall (1997) are not mutually exclusive. Some examples in 

precalculus texts, and even more so in calculus texts require students to strategize 

(undoing) and execute (doing) simultaneously. We saw this in examples on 

evaluating derivatives (e.g., Stewart 3.6 Ex. 3) and integrals (e.g., Stewart 5.4 Ex. 3). 

Since these topics’ examples contained combinations of methods from earlier 

sections, before attempting a problem, the reader must first discern the combination 

of methods will get them to a solution. Furthermore, we found that some processes 

can be classified differently depending on the textbook author’s solution. For 

example, Tall (1997) classifies antidifferentiation as “undoing” because 

mathematically, it is the inverse operation of differentiation. However, AC and GC 

present antidifferentiation as a “doing” process, instructing readers to reference an 
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antiderivative table in its solutions. No attention was paid to the inverse relationship 

between differentiation and antidifferentiation in these examples. 

CONCLUSION 

In this paper, we found a large increase in examples requiring simultaneous doing 

and undoing from precalculus to calculus. This finding may help explain in part why 

students have such difficulty transitioning from precalculus to calculus (Carlson et 

al., 2015). Furthermore, we investigated the notions of “doing” and “undoing” 

processes in calculus and precalculus textbook examples. This study revealed the 

various processes present in such examples and additionally identified a process that 

requires simultaneous doing and undoing. This expands upon Tall’s (1997) notion of 

doing and undoing, demonstrating that these two categories are not mutually 

exclusive in textbook examples. These results illuminate two misalignments, but the 

impact of these misalignments on students and how they can be minimized remains to 

be seen. 
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Impulsive phenomena are encountered by engineering students in their second or third 

year of university study. Students must deploy the mathematical model of the 

phenomena, the delta function also called impulse function, even when they have not 

had a foundational mathematical definition of this strange mathematical object that is 

not a proper function. This literature review is a first step of an ongoing design-based-

research that aims to connect students mathematical and physical representations of 

impulsive phenomena. We use Niss et al. (2016) frame of mathematical modelling 

activities to interpret the existing literature on the mathematical education of 

engineering and physics students regarding the impulsive phenomena and the uses of 

the delta function within diverse engineering and mathematics fields.  

Keywords: engineering, impulsive phenomenon, delta function, modelling, units. 

THEORETICAL CONSIDERATIONS  

Understanding impulsive phenomena requires students to engage in mathematical 

modelling activities. Students must use the delta function to construct the mathematical 

model, perform calculations, or interpret results. The framework established by Niss 

(2016) is used to identify, from the existing literature, potential challenges that students 

may face in mastering impulsive phenomena, the underlying mathematics and their 

link. Impulsive phenomena occur in a range of engineering disciplines, including 

quantum mechanics and electrostatics. Subsequent sections provide examples from 

various fields to highlight the cognitive challenges involved in modelling activities and 

showcase the wide array of mathematical contexts where the delta function is used as 

a tool or as an object (Vos and Frejd, 2020) such as differential and integral equations, 

and probability. Students must hold a dual description of the delta function as both a 

mathematical object or/and as a mathematical tool for solving impulsive phenomena 

problems. According to Niss (2016), through the activities of modelling, the students 

must: 1) map the physical domain into the mathematical domain where the impulse 

function is treated as an object (mathematization); 2) compute within the mathematical 

domain where the impulse function is treated as a tool (calculation); and 3) translate 

the mathematical result back to the physical domain where the impulse function is 

again treated as an object (interpretation). We deploy these theoretical tools to explore 

activities that engineering students encounter when learning about impulse 

phenomena.  

IMPULSE FUNCTIONS MODEL CONCENTRATED PHENOMENA 

When driving through a stop sign, everyone should come to a complete stop. Not 

everyone does, some people drive though at various speeds as shown in figure 1  

(Jackson, 2017). The probability distribution has a spike at 𝑣 = 0; other speeds have 
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much smaller probabilities. These highly concentrated “impulsive” phenomena were 

analysed informally by engineers and physicists decades before the formal 

mathematical description (Schwartz, 1981). 

 

Figure 1: Histogram of minimum speed through stop sign intersection (Jackson, 2017) 

In probability, the delta function δ(x) represents probability density concentrated at a 

single point. If a random variable that takes the value x0 with probability 100%,  the 

probability of the random variable being anywhere else is 0, its probability density 

function (the probability per unit length) can be modelled using the delta function p(x) 

= δ(x−x0) with the expected value given by 𝐸[𝑥] = ∫ 𝑥𝑝(𝑥)𝑑𝑥
+∞

−∞
= ∫ 𝑥δ(𝑥 − 𝑥0)𝑑𝑥

+∞

−∞
. For 

this integral to yield the obvious result that the expected value is x0, the delta function 

is defined such that δ(x−x0) = 0 for all x≠x0 and has an "infinite" value at x=x0 and has 

the defining integral property ∫ 𝛿(𝑥 − 𝑥0)𝑑𝑥
𝑥=+∞

𝑥=−∞
= 1. Though it is zero almost 

everywhere, its integral over the entire real line is nonzero, which is atypical for 

standard functions.  The delta function handles a point mass at x0 in a continuous 

framework (Khuri, 2004) and aids teaching statistical concepts in communication 

systems (Lopez-Martin, 2004). With the stop sign, the independent variable x is the 

velocity v, described by the probability distribution P(v) containing a delta function. In 

quantum mechanics, a wave function describes a particle’s position. A particle 

perfectly localized at position x0, (the particle's position is known with absolute 

certainty) has wave function as 𝜓(𝑥) = 𝐴𝛿(𝑥 − 𝑥0). The wave function is called 

probability amplitude which means that it is not the probability of finding the particle 

somewhere; it is an indicator that must be transformed to obtain probabilities. The 

probability density is given by P(x) = |Ψ(x)|2=|A|2δ(x – x0)
2 with the expected value 

E[x] = x0. This density is concentrated entirely at x0 indicating that the probability of 

finding the particle is 100% at x0 and 0% elsewhere. Regardless of how small ↋ is (as 

long as it is non-zero), the probability of finding the particle within the interval centered 

around x0 is ∫ 𝑃(𝑥)𝑑𝑥
𝑥0+𝜀

𝑥0−𝜀
= 1. According to Tu (2023), students of quantum mechanics 

struggle to mathematize a particle that is confined to a single location into probability 

distribution concentrated at a single point   𝜓(𝑥) = 𝐴𝛿(𝑥 − 𝑥0) , by incorrectly setting 

the wave function to a continuous function ( ) ikxx e =  or to a delta at the origin 

( ) ( )x A x = . They incorrectly calculate energies using integrals containing delta 

functions (Tu, 2023), such as always evaluating the any delta integral to 1, i.e. 
2 ( 3)x x dx



−
−  is set to 1 instead of the proper value of 23 9= . Students have analogous 
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difficulties in electrostatics (Wilcox 2015), mechanical dynamics (Newberry 2008), 

and mechanics of materials (Jong 2006). 

IMPULSIVE PHENOMENA REQUIRE DIFFERENTIAL EQUATIONS 

CONTAINING DELTA FUNCTIONS 

In quantum mechanics, the Schrödinger equation links the particle's spatial wave 

function to its energy. The potential energy due to position or configuration relative to 

other particles is a very narrow and very strongly attracting well. Here, the potential 

well is the impulsive phenomenon modelled mathematically as a delta function V(x) =

( )x− , instead of the position in the previous case. In the Schrödinger equation 

contains a delta 
2 2

2
( ) ( ) ( ) ( )

2

d
x x x E x

m dx
   − − = . The potential ( ( )x− )  and solution 

(𝜓(𝑥)) are shown in Figure 2.  

 

Figure 2 Graph of the Dirac potential ( )x−  and its bound quantum state 

In the calculation step, the impulse function may come at the beginning of the 

calculations, where an impulse function input is integrated or differentiated, such as in 

the above example. The delta function may emerge as an output of the calculation step, 

such as when calculating the kinetic energy of a quantum state (Gangopadhyaya, 2018) 

by integrating the second derivative of a known wave function.  Students incorrectly 

perform calculations that involve impulse functions as outputs such as the charge 

density in electromagnetism (Wilcox 2015). For example, 2 ( 4)x x dx
+

−
−  is set to 31

4
3

 

instead of the proper value of 24 . Students face difficulty in the interpretation step, 

such as incorrectly interpreting the units of the impulse. If the argument is position x, 

the units of ( )x  are inverse meters. If the argument is time t, the units of ( )t  are 

inverse seconds. Students claim the impulse is “just a mathematical thing” (Wilcox, 

2015; Tu, 2023) and incorrectly assert that it has no units like sin( )x . Unlike 2x  or 1/ x  

the units of ( )x  are not obvious from the algebraic expression. Students faces tension 

between interpreting delta functions as mathematical objects (generally unitless) and 

as physical objects (which tend to have units). 

DISCUSSION 

Engineering students face significant challenges with mathematical modeling, solving 

the model, and interpreting the results in physical context (O'Brien, 2014; Sullivan et 

al., 2018; Zandieh, 2000). Difficulties from a gap from theoretical knowledge to 
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practical application and the abstract nature of mathematical models (Thompson, 

2014). The delta function is not typically introduced in terms of familiar mathematical 

notions and students may lack familiarity with its distributional nature, requiring a 

deeper understanding of generalized functions (Hörmander, 2015). Scholars debate 

how the delta function should be introduced in engineering courses. Formal, rigorous 

mathematical models of the impulse include distributions (Schwartz 1981) and 

nonstandard analysis (Benham, 2014). A formal mathematical introduction could 

provide a solid foundation for rigorously understanding its properties (Gelfand & 

Vilenkin, 1964) but risks overwhelming students with unnecessary abstraction. 

Educators debate how much theory to teach to engineering and physics students 

(Amaku, 2021). Engineers find distributions difficult (Juric, 2022; Gallardo, 2014) and 

engineering students reject distributions even after explicit instruction and use naïve 

forms of nonstandard analysis (infinitesimals) in their explanations (Cavallero, 2004), 

as the original thinkers (Laugwitz, 1992). In general, researchers agree on the efficacy 

of introducing a mathematical object through its practical applications before delving 

into its mathematical definition (Bressoud, 2015). But delving into the definition of the 

delta function requires nonstandard mathematical notions (distributions) that may be 

too costly to teach and unnecessary in an engineering context. More research should 

investigate engineering students’  difficulties and conceptions of delta functions as 

mathematical objects and models.  
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On Narratives of the Definite Integral in Biocalculus 
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While calculus textbooks generally cover the same content, the ways in which the 

ideas are sequenced and emphasized can greatly impact how students come to 

understand the content and how the teacher structures instruction. As cumulative 

changes over time is vital in understanding biological processes, I leveraged the 

literary tradition of narrative to explore how writers from a variety of disciplinary 

backgrounds present the definite integral specifically to life science majors.      

Keywords: disciplinary perspectives, definite integral, narrative. 

Researchers have clearly established the importance of the textbook in the teaching 

and learning of mathematics; textbooks influence instructors’ pedagogical decisions 

and structure the sequence of key ideas for students (Fan et al., 2013). In analysing 

how 5 calculus textbooks answer the question “What is the definite integral?”, 

Huffman Hayes (2024) found that each presented a unique story and invited students 

to make a variety of potential connections, particularly with physics.  Because many 

colleges and universities also offer a discipline-specific calculus course, with core 

calculus concepts motivated by and contextualized within life sciences (e.g. see 

Luque et. al., 2022), I expand on Huffman Hayes’ findings. My research question is 

how does the presentation of the definite integral vary in biocalculus textbooks 

written by authorship teams with distinct disciplinary-orientations?  

CORPUS 

My biocalculus corpus is comprised of 4 textbooks designed for biology-specific 

Calculus. These texts were chosen from diverse publishers and because the 

authorship teams represent diverse research areas. To provide counterpoint, I also 

analysed a widely-used, standard calculus book written by a mathematician:  

 A Mathematician's Calculus: J. Stewart. (2016). Calculus: Early 

transcendentals (8th Ed.). Cengage Learning. 

 Mathematicians' Biocalculus: J. Stewart & T. Day. (2015). Biocalculus: 

Calculus for Life Sciences. Cengage Learning. 

 Biomathematicians' Biocalculus (Example 1): C. Neuhauser & M. L. Roper. 

(2018). Calculus for biology and medicine. Upper Saddle River: Pearson.  

 Biomathematicians' Biocalculus (Example 2): E.N. Bodine, S. Lenhart, & 

L.J. Gross. (2014). Mathematics for the life sciences. Princeton Univ. Press.  

 Biologists' Biocalculus: A. Garfinkel, J. Shevtsov, & Y. Guo. (2017). 

Modeling life: the mathematics of biological systems. Springer.  

For me, biomathematician refers to a mathematician whose research is directly 

related to biology. For potentially ambiguous text classifications given the authors' 
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backgrounds, I used any preface materials that explained the motivation for and 

process of developing the textbook. 

METHODS 

Eye tracking studies of undergraduate STEM students suggest that novices read 

challenging new texts front to back, unlike experts who tend to “jump around” and 

return to previous passages (Gold et al., 2021). Accordingly, the sequencing of ideas 

and distance between connected concepts in a textbook has greater implications for 

the novice learner than the instructor, who is already a content expert. To map how 

novice readers are likely to engage with the corpus, I frame my analysis through the 

literary tradition of narrative, which has been used to study mathematics curriculum 

(e.g. Dietiker, 2013; Dietiker, 2015; Miežys, 2023; Huffman Hayes, 2024). I 

conceptualize narrative following Netz (2005), who argues that mathematics texts tell 

a story, distinguishing between description and narrative, writing, “some passages - 

descriptive - add detail to the fictional world, constructing its underpinning of reality; 

other passages - narrative - unfold the plot that takes place in that fictional world” 

(2005, p. 262). The final product of my analysis is a set of chronological diagrams 

that position the mathematical topics (descriptions) along a story arc.   

RESULTS 

Figures 1-5 are the resulting narrative diagrams. To interpret these diagrams, I have 

three general features: upward slope (rising action) indicates a concept building on 

another concept, horizontal lines (a climax or false-climax) are concepts that were 

separated from the general text as important (e.g. by a box.), and downward slope 

(denouement) indicates a closing thought. The majority of the concepts are standard 

calculus topics. The context-specific problems provided as motivation are the “drug 

problem” (finding the cumulative amount of a drug delivered to a patient given the 

rate of drug delivery), the “area problem” (finding the area under a curve), the 

“distance problem” (using the velocity of a car to find the distance travelled), and the 

“pathogenesis problem” (area under measles pathogenesis curve gives amount of 

infection required for symptoms to develop). There are two notable combinations of 

general features. A horizontal line that ends without a subsequent decent indicates a 

split narrative, where the reader is to keep this sequence of ideas in mind, but we start 

again at height zero to build up another sequence of concepts. A horizontal line 

appearing at a height greater than zero without an upward sloping line preceding it 

indicates a deus ex machina, or the abrupt introduction of a concept in a climactic 

role without narrative connection to proceeding concepts.  

In the Mathematician’s Biocalculus text, the fundamental theorem of calculus (FTC) 

Part 2 is called the "evaluation'' theorem when first introduced. At the stage where 

differentiation and integration are described as reverse processes, the evaluation 

theorem is rebranded as FTC part 2. In the Biomathematician’s Biocalculus text 

(Example 1), the “distance problem'' is briefly discussed in antiderviatives, but not 

emphasized. Within the chapter on integration, the "distance problem'' is given as an 
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application of integration, rather than used as motivation. In the Biomathematician’s 

Biocalculus text (Example 2), the “distance problem'' appears as an end of section 

exercise. 

 

Figure 1: Narrative diagram for A Mathematician’s Calculus.  

 

Figure 2: Narrative diagram for Mathematician’s Biocalculus. 

 

Figure 3: Narrative diagram for Biomathematicians’ Biocalculus Text (Example 1). 

In the Biologists’ Biocalculus text, the fundamental theorem of calculus part 2 is 

simply called the fundamental theorem of calculus; there is no discussion of the 

fundamental theorem of calculus part 1. Additionally, the fundamental theorem of 

calculus is first presented in a manner that a mathematician would likely consider an 

abuse of notation; the same variable is used for the variable of integration and the 

upper bound of integration. Another feature that makes this exposition distinct from 

the other texts is the infinite limit is instead expressed as a limit of Δt approaching 0 

where t is the independent variable of time in the distance or drug problem. 
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Figure 4: Narrative diagram for Biomathematicians’ Biocalculus Text (Example 2). 

 

Figure 5: Biologists’ Biocalculus Text 

Each narrative connects a motivating problem (either area, distance, or drug) to the 

definite integral, however there is a wide variety in the “length” of these arcs, with 

the shortest being 3 topics and the longest being 10 topics – although in this maximal 

case (figure 2) the text revisits the area problem just prior to the definite integral.  

DISCUSSION 

The narrative diagrams reveal great variation between texts with distinct disciplinary-

orientations. In comparing the 5 figures, there are three key findings: (1) while the 

deus ex machina is a popular narrative device in stories of the derivative, e.g., to 

introduce the derivative function in Biomathematicians' Biocalculus (Example 1), 

none of these narratives used a deus ex machina to reach the definite integral, (2) 

surprisingly, in some narratives, the definite integral was not a climax, and (3) there 

is a wide variety in the arc lengths connecting a motivating problem to the definite 

integral. To improve outcomes for students, future work should explore the scope and 

rigidity of students’ structural expectations with respect to narrative and how this 

impacts learning. Certain texts incorporated several split narratives, however split 

narrative is only common in certain literary genres, such as mystery or fantasy. Are 

students that encounter split narrative structures regularly more capable of parsing 

split narrative in mathematical texts? Additionally, curricular materials differ 

substantially with respect to the cognitive load they place on learners (Sweller et al., 

1998); cognitive load theory suggests reading a textbook will place high demand on 
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students’ short-term memory. Because learners tend to read texts from front to back, 

narrative arc length will have a direct impact on a learner’s ability to synthesize text. 

What is the optimal arc length? Too short and the ideas may be insufficiently 

connected for student meaning making, but too long and some students may not be 

able to make those connections. Finally, in comparison to the narratives explored by 

Huffman Hayes, which primarily made disciplinary connections to physics, the 

Biocalculus texts I analyzed drew connections to life science inspired contexts (some 

to a greater extent than others). Because motivation can improve student engagement 

(Akbuga & Havan, 2022), future work should explore how the integration of these 

examples into definite integral narratives impact student performance outcomes. 
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Automatic assessment is widespread in Mathematics, and it integrates computing 

environments and grading for the creation of meaningful and open-ended tasks for 

inquiring students’ understanding. This study focuses on three types of tasks related to 

univariate Calculus: explorative tasks, translation tasks, and example-generation 

tasks. They have been experimented with in two first-year university Mathematics 

modules in Italy and Sweden as group formative activities. The data consists of 

students’ responses to a survey that highlights their perception of the difficulty of the 

tasks and of the increase in understanding triggered by the activities. Our results show 

the difficulty perceived as reasonable and the increase as tangible. 

Keywords: computer-aided assessment, example-generation tasks, explorative tasks, 

mathematics education, translation tasks. 

INTRODUCTION 

The impact of automatic assessment tools on higher education has undergone a strong 

boost in recent years, driven by the need for support for innovative learning 

approaches. These tools, paired with suitable methodologies, improve the students’ 

experience, providing immediate feedback and enhancing engagement (Barana et al., 

2021). Post-secondary Mathematics, including Calculus, is well-suited to this purpose, 

allowing for the creation of tasks to assess how deeply students understand its topics, 

thanks to computer-aided assessment (CAA) systems, which combine the potential of 

advanced computing environments with solid grading capabilities. 

This paper presents a study framed within a joint project between an Italian and a 

Swedish university, devoted to CAA in post-secondary Mathematics (Fahlgren et al., 

2024). Specifically, the research focuses on tasks involving univariate functions. 

Students were administered a survey after completing the tasks to investigate their 

perception of the tasks' difficulty and the extent to which they felt their understanding 

had increased. This study helps determine the actual possibility of designing activities 

that learners find comfortable, thereby providing benefits from both an instructional 

and a more personal perspective. 

THREE DIFFERENT TYPES OF TASKS 

The research is based on three types of tasks concerning functions. In the first type, 

‘explorative tasks’, students are encouraged to use interactive dynamic technology, for 

example, GeoGebra or Maple, to explore mathematical relationships and formulate 
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conclusions. Suitable use of these technologies is widely recognized for enhancing 

students’ conceptual understanding. In addition, researchers emphasize the value of 

asking students to formulate their conclusions in writing (Joubert, 2017). The second 

type of task, ‘translation tasks’, concerns tasks where students are asked to convert 

between registers, for example, by determining a function formula for a given graph. 

It is widely acknowledged that a fundamental aspect of understanding the concept of 

functions is the ability to transition between various representations, such as formula 

and graph. Translating from graph to formula is a more challenging task for students 

compared to the vice versa (Leinhardt et al., 1990). In the third task type, ‘example-

generation tasks’, students are prompted to create examples that meet specific 

conditions. Since there are no general solving methods for such tasks, students need to 

be creative and develop strategies based on their conceptual understanding. Moreover, 

if students are asked to provide more than one example, they have to reflect on how 

their first example can be varied while still meeting the given conditions. Indeed, the 

ability to generate diverse and valid examples is indicative of their deep understanding 

(Watson & Mason, 2005). It has been important to construct these tasks at an 

appropriate level: they had to be challenging to engage the students properly, but not 

too hard to avoid them quitting the activity. 

COMPUTER-AIDED ASSESSMENT SYSTEMS 

CAA systems recently grown significantly in university-level math education, offering 

algorithms, customizable grading, adaptive assessments, and interactive feedback. 

These features make them especially effective for formative assessment, enhancing 

learning through timely, constructive feedback (Barana et al., 2021). CAA systems 

personalization of grading algorithms facilitates the automatic assessment of example-

generation tasks. Since example-generation tasks often allow for many different correct 

responses, they are time-consuming to correct manually. Hence, CAA systems are 

suitable for this task type, especially in large study groups at the university level.  

Sangwin et al. (2009) propose utilizing computer-generated representations of 

mathematical objects to provide implicit feedback rather than explicit solutions. 

Feedback could include the graph of the student’s own response before grading, either 

by leveraging the CAA system’s preview capabilities (Barana et al., 2021) or 

encouraging students to use external tools like Dynamic Mathematics Software (DMS) 

to graph their solutions. This allows students to verify whether their function meets the 

given criteria. Such an approach promotes self-assessment by giving students the 

opportunity to independently identify and correct their errors (Black & Wiliam, 2009). 

CAA systems leverage algorithmic capabilities to generate graphs that can be included 

in tasks, adapting to random parameters to provide unique variations for each attempt 

and student. These capabilities enable the creation of graphical tasks—mathematics 

assessment items in which a graphic plays a crucial role in solving the problem (Lowrie 

et al., 2012). The graphic conveys key information that students must interpret and 

decode as part of the solution process. Such tasks are often used to promote students’ 

sensemaking (Lowrie et al., 2012). When graphical tasks pertain to calculus, solving 

93



  

them typically involves interpreting the graphical representation of a function, 

analyzing its features, and converting the information into another form, such as 

symbolic or numerical representations. This practice supports students in drawing 

connections and developing abstract reasoning skills (Adu-Gyamfi et al., 2017). 

METHODS 

The study focuses on the following research question (RQ): how do bachelor students 

perceive the impact of these tasks’ typologies in understanding mathematical topics 

related to univariate Calculus? In order to respond to this question, data from a survey 

to first-year university students taking a module in Mathematics directly involving 

Calculus have been analyzed. The following questions have been considered: 

(Q1) What do you think about the difficulty level of the following tasks? 

a) Tasks where you should investigate using interactive graphs and 

then formulate your conclusions in writing 

b) Tasks where you should determine the functional formula based on 

a given graph 

c) Tasks where you should provide two examples of functions that 

fulfil certain conditions 

(Q2) To what extent do you agree with the following statements on tasks? 

a) Investigating mathematical relations using interactive graphs and 

formulating conclusions provided an increased understanding 

b) Determining the formula of the function based on a given graph 

provided an increased understanding 

c) Providing two examples of functions that fulfil certain conditions 

provided an increased understanding 

d) It was difficult to formulate conclusions in writing 

e) The work with the tasks has been at a reasonably challenging level 

Our sample is constituted of 119 biotechnology students from the University of Torino, 

Italy (69 from the academic year 2022-23, 50 from 2023-24) and 293 engineering 

students from the University of Karlstad, Sweden (154 from 2022-23, 139 from 2023-

24). The module in Turin included also linear algebra and probability/statistics, while 

in Karlstad only basic calculus was covered. According to ethical guidelines, we 

considered only students who provided explicit consent to have their responses (in 

aggregate form) used for research purposes. The data, consisting of responses on a 

Likert scale, vary from 1 (very low/fully disagree) to 5 (very high/fully agree) and are 

presented through descriptive statistics. 

RESULTS 

Starting with question (Q1), around half of the students considered explorative tasks 

(item a) as being mid-difficult (score 3), both in Italian and Swedish universities. The 

other students tended to distribute almost equally between considering the tasks as 

being of low or high difficulty, with a slight perception of less difficulty in Sweden. 

Translation tasks (item b) had a sharper perception, with most of the students 
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responding either “mid” (score 3) or “high” (score 4) difficulty and higher averages. 

Regarding example-generating tasks (item c), “mid” and “high” were again the most 

frequent responses. However, in Italy, example-generating tasks were perceived as 

more difficult than translation tasks, whereas in Sweden, the opposite was true. Table 

1 summarizes the most noteworthy outcomes: for each university and a.y., the left 

column presents the average, while the right one (bold) considers the responses given 

by at least 25% of students, in decreasing order of frequency. We underlined them if 

they were given by at least 50% of students. 

Q1 items IT 2022-23 IT 2023-24 SE 2022-23 SE 2023-24 

a) 2.99 3 3.14 3 2.78 3 2.86 3, 2 

b) 3.33 4, 3 3.78 3, 4, 5 3.32 3, 4 3.30 3, 4 

c) 3.57 4, 3 3.84 4, 3 3.12 3, 4 3.06 3, 4, 2 

Table 1: Ratings about the difficulty level relative to various kinds of tasks 

Considering now question (Q2), as per items a), b), and c), referring to explorative, 

translation, and example-generation tasks respectively, there was general agreement 

that they increased students’ understanding. It was particularly strong in the Swedish 

case, where averages were for all items and a.y. higher than 4. It was also relevant in 

the Italian case, with all averages above 3.5 and some higher than 4. Item d) highlighted 

a perception of moderate difficulty in concluding in written form (averages slightly 

above 3), while item e) showed adequateness of the challenges posed. Table 2 presents 

the key insights, following the same structure as Table 1. 

Q2 items IT 2022-23 IT 2023-24 SE 2022-23 SE 2023-24 

a) 4.09 4 4.02 4 4.33 5, 4 4.29 5, 4 

b) 4.01 4 3.70 4 4.21 5, 4 4.24 5, 4 

c) 3.70 4 3.52 4, 3 4.08 4, 5 4.16 5, 4 

d) 3.30 4, 3 3.04 3, 2 3.22 3, 4 3.12 3 

e) 3.71 4, 3 3.74 4, 3 3.92 4 4.10 4, 5 

Table 2: Ratings about agreement with certain statements on tasks 

DISCUSSION AND CONCLUSIONS 

The results presented above allow us to answer the research question (RQ): students 

generally perceived the impact of the tasks positively on their understanding, 

recognizing how they helped them improve it. Moreover, their difficulty has been rated 

as reasonable, thus allowing them to be adequately engaged without losing interest. 

These findings confirm students’ good perception of learning calculus with interactive 

tools, agreeing with other studies such as (Bedada & Machaba, 2022). Future research 

can consider asking and analyzing more generally how activities of this kind impact 
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learning Mathematics in a broader sense by considering different Calculus topics and 

other mathematical branches. 
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An epistemological analysis of the fluidity of the definition of dependent and 

independent variables in thermodynamics leads to a discussion of the implications for 

the design and interpretation of contour diagrams in this context. An overview of 

research looking at expert and student calculations of partial derivatives from contour 

maps appropriate to thermodynamics, as part of the Paradigms in Physics project at 

Oregon State University, is presented, along with links to curricular materials 

developed in this project. 
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VARIABLES IN THERMODYNAMICS 

Consider a series of experiments involving a gas in a piston such that the pressure 𝑝 , 

volume 𝑉, and temperature 𝑇 can be changed and/or measured, see Figure 1.   

 

Figure 1: Gas in a piston. The pressure is controlled by adding weights to the top of the 

piston.  The temperature is held constant by immersing the piston in a constant 

temperature bath or the entropy is held constant by insulating the piston (not both!). 

In each run of the experiment, the temperature is held constant by immersing the piston 

in a constant-temperature thermal bath, which allows energy to flow into/out of the 

piston. The results of these experiments can be plotted as a series of isotherms on a 

single contour plot, see Figure 2a.  Alternatively, in a series of adiabatic experiments 

in which the piston is insulated so that no energy flows into/out of the piston from the 

environment, it is the entropy 𝑆 which is constant, resulting in a different contour plot, 

see Figure 2b. (Calculating entropy is subtle and often difficult.  Holding entropy 

constant is easy—insulate!) 

A Carnot cycle consists of a series of expansions and compressions of the piston, 

alternating between isothermal and adiabatic, so that the system returns to the same 

state, see the bold contour in Figure 2c. 
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In a mathematics class, the very definition of a function implies that the variables 𝑥 

and 𝑦 are independent and the value of the function 𝑓(𝑥, 𝑦) is dependent. In contrast, 

thermodynamics treats all variables equally and which variables are considered to be 

dependent and independent may change during data taking and analysis.  

 

Figure 2: Contour plots of data from experiments on a piston.  Fig 2a shows constant 

temperature isotherms, Fig 2b shows constant entropy adiabats, and the bold contour 

in Fig 2c shows a Carnot cycle. 

What does not change is the number of independent variables.  For a given experiment, 

the number of independent variables is equal to the number of ways of getting energy 

into/out of the system.  In the piston experiment, this number is two: through heating 

and/or through doing mechanical work on the system.  A scientist usually thinks of the 

variables that the experimenter controls as independent.  Here, one would consider 

temperature (or entropy) to be the independent.  Then, either pressure or volume can 

be chosen to be independent, but not both.  Experimentally, it may be easiest to control 

the pressure, by adding or subtracting weights from the top of the piston and then to 

measure the resulting volume.  

TYPES OF CONTOUR GRAPHS 

This flexibility in interpreting which variables are independent and dependent has 

significant consequences for the interpretation of contour plots.  In the conventional 

interpretation of a contour plot, such as a topographic map of a hill, the independent 

spatial variables 𝑥 and 𝑦 are plotted on the horizontal and vertical axes, respectively, 

and values of the dependent variable, height, are contours.  In Figure 2, from the point 

of view of the experiment, the independent variables are plotted as contours and on the 

vertical axis, while the dependent variable, volume, is plotted on the horizontal axis! 

Nevertheless, in thermodynamics, it is more common to plot 𝑝 vs. 𝑉, as in Figure 2, 

because in the analysis, most often the scientist wants to calculate the work done on 

the system given by 

𝑊 = − ∫ 𝑝  𝑑𝑉, 

interpreted in standard calculus language as “the area under the curve.”  Now we have 

switched our point of view, so that the volume is independent, the pressure is 
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dependent, and the temperature is a parameter that specifies which run of the 

experiment is being considered. 

DERIVATIVES FROM CONTOUR GRAPHS 

Returning to Figure 2c, we might also want to determine the partial derivative 
𝜕𝑝

𝜕𝑉
, the 

main contributor to the bulk modulus. The figure makes it immediately clear that one 

must ask, not only at what point, but also along which curve, should I calculate the 

derivative? Thermodynamics provides a generalization of Leibniz notation for these 

choices 

(
𝜕𝑝

𝜕𝑉
)

𝑇
 or (

𝜕𝑝

𝜕𝑉
)

𝑆
  

to indicate the curve with 𝑇 held constant (and similarly for 𝑆 held constant). 

As an additional complication, in contexts where one does not have an algebraic 

expression for a function, e.g. discrete tables of data or graphs, finding a derivative (at 

a point) always involves determining small changes in both the numerator and the 

denominator variables and then calculating the appropriate ratio. Of course, a ratio of 

small changes only gives an approximation to the derivative.  The limit process to find 

an exact value for the derivative is impossible.  Just as in everyday speech, if you ask, 

“What is the temperature outside?” the answer “in the mid-20’s (Fahrenheit)” is 

sufficient to tell you that you need a coat.  You wouldn’t bother to specify, “What is 

an approximation to the temperature outside?”  In the same way, scientists will call this 

ratio “the derivative” so long as the shared understanding is that the approximation is 

good enough. 

What remains is to decide which two points to use to find the ratio of small changes.  

The two points must lie along a curve for which the desired variable is being held 

constant—a clear indication that the considerations in the previous section are crucially 

important.  Also, the two points must be close enough together that they lie in the 

regime where the function is changing linearly, to the degree of accuracy necessary for 

the application, but not so close that the difference between the values of the numerator 

(or denominator) variable cannot be sufficiently determined from the accuracy of the 

information.  Here it is crucially important that the scientist have a clear understanding 

of the accuracy of the data, the accuracy with which the information can be read of the 

graph, and the size and spread of the fluctuations of the information. 

PHYSICS EDUCATION RESEARCH AND CURRICULAR MATERIALS 

FROM THE PARADIGMS PROJECT 

In the epistemological analysis above, we see that the interpretation of which variables 

are independent, dependent, or parameters in applied settings like thermodynamics is 

fluid (pun intended).  The interpretation may change between the taking of data and its 

analysis.  Furthermore, the calculation of a (partial) derivative depends on whether the 

given information is in the form of discrete data or an analytic formula.  For more than 

25 years, the Paradigms project at Oregon State University has been studying the 
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epistemological differences amongst experts in different fields and the development of 

these disciplinary understandings in advanced undergraduate students, using a variety 

of interrelated theoretical perspectives contained within social constructivism.  This 

research work has been intertwined with the development of curricular materials and 

hands-on manipulatives for thermodynamics and other middle-division physics 

courses.   

A brief review of relevant research from the Paradigms Project can be found in the next 

section. Relevant curricular materials can be found on our website (Paradigms Team, 

2015–2024a), and a short description of those materials that addresses derivatives can 

be found in Dray et al. (2019). A lovely, short classroom activity that asks students to 

confront many of the issues raised in this paper can be found in Paradigms Team 

(2015–2024b). 

 

RESEARCH ABOUT STUDENT UNDERSTANDING OF DERIVATIVES 

FROM CONTOUR GRAPHS 

Emigh and Manogue (2024) conducted semi-structured, think-aloud, problem-solving 

interviews with nine Paradigms students asking them to find the derivative at the 

indicated point 𝐴 of a 𝑝 − 𝑉 diagram, similar to Figure 2c, where the Carnot cycle 

changes from holding temperature constant to holding entropy constant.  Thought of 

as a graph of a function of one variable, this is a point where the function is continuous, 

but the derivative is not.  We were curious about what reasoning the students might 

use, from mathematics reasoning (“I can calculate the derivative from the left and the 

right, but they are different.”) to physics reasoning (“Do you mean holding the 

temperature constant or the entropy?”).  Interestingly, the thematic analysis showed 

that even when these interviewees demonstrated that they understood both math and 

physics concepts, they usually didn’t relate them without prompting. Only one 

interviewee spontaneously realized that the two derivatives (one for the blue curve and 

one for the green curve) can be viewed as partial derivatives with the corresponding 

variables held constant. Sections V and VI of this reference give several detailed 

transcript examples of student reasoning.  Two important insights of this research are: 

While these learners were initially orienting themselves to the graphs, they were more 

likely to attend to the labels on the horizontal and vertical axes than the labels on the 

contours. Interviewees did not use the subscript notation in generalized Leibniz 

notation for holding a variable constant until they attempted to manipulate some 

equations symbolically and did not appear to connect this notation to their other 

understanding of derivatives.   

In a separate study, Bajracharya et al. (2019) conducted semi-structured, think-aloud, 

problem-solving interviews with eight Paradigms students. Interviewees were asked a 

more difficult prompt: to determine a particular partial derivative from data with some 

presented in a contour graph and other data presented numerically in a table.  To solve 

this problem successfully, interviewees needed to identify which partial derivative 
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could be found from the data as presented and calculate the correct ratios of small 

changes.  Although this aspect of the problem was not the main focus of the thematic 

analysis of that paper, section V includes description of the problems interviewees had 

identifying which variables were present in the table of data and/or the contour graph 

and in using this information to find appropriate partial derivatives.  These tasks are 

clearly challenging for middle-division students. 

SUMMARY 

Variables in thermodynamics like temperature and pressure do not have the same 

automatic identification as independent or dependent as spatial variables such as 𝑥 and 

𝑦 do for scalar fields such as electrostatic potential in electromagnetism.  This fluidity 

in the identification carries over to the interpretations of contour diagrams.  We have 

provided some pointers to research from the Paradigms in Physics team and to related 

curricular materials that may be of use to researchers, curriculum developers, and 

teachers.   

An observation from Emigh & Manogue (2024) states, “As instructors, we were 

especially encouraged to see that prompts from the interviewer shifted students’ 

attention dramatically. The prompts consisted of some variant of ‘Did you think about 

holding anything constant?’ and led most students both to solve the problem and to 

make sense of it—and they proceeded to use different language (e.g., ‘partial’ 

derivatives with some variable ‘held constant’) and different notation (e.g., subscripts) 

than before these prompts.”  This observation suggests that small curricular changes 

may be very powerful. 
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The Adding Up Pieces interpretation of definite integrals (e.g., Jones, 2013) is 
important for applications in physics and other domains. Research on integration, 
however, has paid less attention to how students partition physical attributes when 
constructing Riemann sum approximations for target quantities. We use interview data 
to demonstrate challenges that calculus-based physics students experienced when 
partitioning in service of constructing Riemann sum approximations. 
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INTRODUCTION 
A growing body of research has investigated students’ interpretation and construction 
of integrals, especially when solving problems in physics and other domains (e.g., 
Jones & Ely, 2023; Nguyen & Rebello, 2011; Oehrtman & Simmons, 2023). One key 
issue is whether and, if so, how students connect definite integrals with adding up small 
amounts of a target quantity (e.g., Ely, 2017; Jones, 2013). We interviewed university 
students in calculus-based physics courses and observed their challenges partitioning 
physical attributes in ways compatible with adding up pieces in normatively correct 
Riemann sums. This implies that significant competencies for applying definite 
integrals to solve problems outside of pure mathematics have been underexamined. 
LITERATURE REVIEW, THEORY, AND RESEARCH QUESTION 
Applying definite integrals to solve problems about physical situations requires 
reasoning in terms of quantities, such as lengths, time, work, electric charge, etc. Past 
research has provided a variety of perspectives on such reasoning, and much of it has 
been grounded in Thompson’s account of quantitative reasoning (e.g., Thompson, 
2011). Most relevant to the present study is work by Jones (e.g., 2013), who found that 
college students can interpret the ∫ 𝑓(𝑥)	𝑑𝑥!

"  notation as indicating addition of small 
pieces (Adding Up Pieces), denotating boundaries of a region in the plane, and 
signifying a function whose derivative is the integrand. Adding Up Pieces consists of 
(a) partitioning a physical situation into small pieces, (b) approximating the target 
quantity within each partition piece, and (c) summing small amounts of the target 
quantity across all of the partition pieces to approximate the total amount.  
In further work, Oehrtman and Simmons (2023) proposed that students’ attention shifts 
across three scales when constructing definite integrals. They named these scales the 
Basic, Local, and Global models. The main situation we will discuss in our results 
section is based on pressure and force. Using this example, a Basic model relates 
quantities with constant values (e.g., pressure • area = force, 𝑃 • 𝐴 = 𝐹). A Local 
model restricts a basic model to small regions where varying quantities are 
approximately constant (e.g., pressure • “small amount” of area = “small amount” of 
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force, 𝑃 • D𝐴 = D𝐹). A Global model is an accumulation based on local models (e.g., 
the sum of small amounts of force, ∑𝑃 • D𝐴 = 𝐹). The present report makes closest 
contact with one of several points made by Oehrtman and Simmons––that students 
must decide how to partition. In particular, we focused on one task and asked: How did 
the calculus-based physics students partition a physical attribute and to what extent 
was that partitioning compatible with constructing appropriate Riemann sums?  
METHODS 
We interviewed five students enrolled in first semester, calculus-based physics (Spring, 
2023) and nine students enrolled in second semester, calculus-based physics (Fall 
2023, 2024). The students attended a selective university in the United Sates. Each 
student participated in a series of three, one-on-one, semi-structured interviews (e.g., 
Bernard, 1994). Interviews were conducted by the first author (Fall 2024) and by the 
second author (Spring 2023, Fall 2023). Interviews were spaced a few weeks apart 
throughout the semester, and each lasted approximately 1 hour. The tasks afforded 
opportunities to approximate target quantities by Adding Up Pieces, consistent with 
constructing Riemann sums. Figure 1 shows one task that we adapted from Sealey 
(2014). Students worked at their own pace and, as a result, some worked on more tasks 
than others. We videorecorded the interviews and collected all written work.  

Pressure, 𝑃, applied across a surface area, 𝐴, creates a total force, F. Consider a vertical 
side wall of a tank with a width of 4 feet and a depth of 3 feet (see picture below). Assume 
that the tank is full of water. The pressure on the tank wall increases with the depth of the 
water according to the following law: 𝑃 = 15𝑥, where 𝑥 is the depth of the water (the 
deeper the water, the greater the pressure). Describe a method you could use to approximate 
the total force from the water pressure on the wall. 

 
Figure 1. The Water Pressure task.  

One normatively correct approach to the Water Pressure task is based on the local 
15𝑥 • 4 • D𝑥 = D𝐹 model which, in turn, is based on partitioning the tank wall into 
thin, horizontal rectangles that span the wall from left to right (Figure 2 shows a generic 
example). 

 
Figure 2. Normatively correct partition of the tank wall.  
  

103



  
Results 

Across tasks, students experienced challenges using rectangular areas to construct 
Riemann sum approximations. We illustrate this result with the Water Pressure task. 
For this task, we could observe students’ approaches to partitioning when they did not 
have rehearsed reasoning, because using area to approximate force was less familiar 
than approximating distance using area under a speed versus time graph. None of the 
11 students who worked on the task was confident about the relationship between 
pressure and force, but each recognized that integration was likely relevant and at some 
point included either 15𝑥 or P in an integrand expression. At the same time, none 
succeeded fully in partitioning the tank wall in service of constructing Riemann sum 
approximations for the total force. We observed four approaches to partitioning. 
Approach 1: Horizonal Cross Sections Parallel to the Bottom of the Tank 
Iliana (Sp 23) discussed Adding Up Pieces and located areas as horizontal cross 
sections of the tank. She read the Water Pressure task, wrote “∫15𝑥”, and explained:  

Iliana:  I just said that to calculate the total force you would have to take the integral 
of the pressure, and then that is like, integral is really just like finding the sum 
of all the surface areas in the tank. The like, because like the pressure is just 
applied across each little area for like x [gestured with open palms to indicate 
stacking horizontal slices].  

Iliana commented “I don't feel like the 4 feet of the width has anything to do with that, 
but it might. I am not completely sure.” When the interviewer asked where Iliana saw 
surface area, she drew horizontal slices (Figure 3a) and confirmed that her arrows 
pointed “downward.” Her statements, hand gestures, and drawing gave consistent 
evidence that she attended to cross sections parallel to the bottom of the tank.  

         
(a) (b) (c) 

Figure 3. Pieces of area. (a) Iliana, (b) Melinda, (c) Matthew.  

Approach 2: Rectangular Regions Starting from the Top of the Tank Wall (4x) 
Alex (Sp 23) and Melinda (Fl 23) referenced Adding Up Pieces, and they discussed 
pressure and area as functions of x. As an example, Melinda graphed 𝑃 = 15𝑥, wrote 
∫ 15𝑥	𝑑𝑥#
$ , and explained approximation in terms of adding pressures at different 

depths: “If we, say, measure at like more points, right? At all these, all these like x 
values and then we add them all up, then we can get a better approximation of the total 
pressure that's going against the wall.” A few exchanges later, she shaded a rectangular 
strip at the top of the wall (Figure 3b), wrote 4 • (𝑥) to express the area of that region, 
and explained how to approximate her integral from the graph of 𝑃 = 15𝑥:  
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Melinda:  You would want to find like the area of like a little piece, or like one of these, 

right. And that would be dx, which is the change in x, times the height, which 
is 15 times x, or like it follows this function. And so, to find the area of that, 
it's like a rectangle. So, you just multiply the base times the height and then 
you find the area of that.  

Melinda recognized that rectangles on the wall and on her graph of 𝑃 = 15𝑥 referred 
to different combinations of quantities, but she did not connect local rectangular 
regions under her graph to local rectangular regions on the tank wall.  
In a related approach, Rahul (Fl 24) discussed adding up pressures, wrote the integral 
4x ∫ 15𝑥′	𝑑𝑥% = 𝐹&

$ , and explained that 4x was the area of the entire tank wall.  

Approach 3: Regions That Tile But Do Not Span the Tank Wall 
Matthew (Fl 23) considered two ways to construct a small piece. First he considered 
pressure applied to little pieces of area and wrote 𝐹 = ∫𝑃	𝑑𝐴. Then he considered little 
bits of pressure applied over the entire tank wall. He explained why he chose the latter 
over the former:  

Matthew:  I don't know if it's going to be area, dP, like a little bit of pressure over the 
entire area, or it's this total pressure over the entire space of the area. But 
given that the area is constant, and I guess the pressure's changing, I think I 
would actually not go with [𝑃	𝑑𝐴] and do, maybe dP times A.  

Matthew produced drawings to indicate how he visualized his two approaches (Figure 
3c). For the drawing with several arrows labelled “dP,” he explained “when you, when 
you sum up all these dPs, you would get the pressure.” Figure 3c also shows where on 
the wall he saw dA. Notice that he apparently intended to tile the tank wall, but not 
with rectangles that spanned the width, in contrast to Figure 2. A few exchanges later 
he explained that the pressure was constant on horizontal lines that spanned the width 
of the tank wall, but he did not revise his partitioning to align with that in Figure 2.  
Approach 4: Thin Vertical Slices That Span the Tank Wall (4dx) 
Four of the remaining five students (Jack, Sp 23; Larisa, Sp 23; Torin, Fl 23; Jeff, Fl 
24) located a small piece of area as a thin rectangle that spanned the tank wall, even if 
they encountered other challenges constructing and interpreting integrals to solve the 
task. Grace (Fl 24) located a small piece of area similarly, but only after tiling the tank 
wall using small square regions for dA ––similar to Matthew (Figure 3c)––and effortful 
reasoning about units. Finally, Kathrine (Sp 23) generated	 ∫ 15𝑥	𝑑𝑥 but used 
trapezoids instead of rectangles to determine the area under the graph of 15x.  
CONCLUSION  
All 11 students who worked on the Water Pressure task considered definite integrals 
and referenced Adding Up Pieces at some point, but six partitioned the tank wall in 
ways that were not compatible with constructing appropriate Riemann Sum 
approximations, at least initially. As students move from constructing Riemann sums 
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in one dimensional situations, such as approximating distance from speed in linear 
motion, issues of how to partition can become more complex. These results suggest 
that teachers should discuss with students how to partition, especially when the 
physical situation contains more than one dimension. One possibility is to ask “Where 
is the integrand constant?” and to use the answer to guide partitioning. In case of the 
Water Pressure task, such discussion might orient students to the partitioning shown in 
Figure 2. 
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In the undergraduate chemistry curriculum, physical chemistry stands out as one of 
the most difficult courses given its reliance on calculus, particularly when describing 
atomic and molecular structure with quantum mechanics. Though there is literature in 
chemistry education research investigating students’ conceptualizations of quantum 
chemistry, few of these studies focus on students’ use of mathematics in this context. 
To this end, we interviewed students about the “particle-in-a-box”, one of the first 
quantum models discussed in physical chemistry. A preliminary case-study analysis 
informed by the knowledge-in-pieces framework demonstrates the ways students attend 
to features related to spatial dimensions might impact their conceptualization and use 
of quantum mechanical models. 
Keywords: chemistry, quantum mechanics, calculus 
INTRODUCTION 
Physical chemistry is a uniquely challenging course for chemistry majors. This course 
is typically taught sequentially over two semesters and covers essential chemical 
concepts such as kinetics(Bain & Towns, 2016), thermodynamics (Bain et al., 2014), 
and quantum mechanics (Fox & Roehrig, 2015). Among the three, quantum mechanics 
stands apart due to its abstract concepts which are difficult for students to conceptualize 
(Körhasan & Wang, 2016; Partanen, 2018). Generally, students invoke concepts from 
classical mechanics when interpreting quantum mechanics (Allred & Bretz, 2019), 
which is similar to the findings reported in physics education journals (Krijtenburg-
Lewerissa et al., 2017). Quantum mechanics makes use of mathematical models to 
describe real-world phenomena, such as atomic structure. There are few studies in 
chemistry education literature that specifically focus on students’ conceptualizations 
of these quantum mechanical models (Muniz et al., 2018), and though these articles 
provide a great foundation for further research, many of the studies conducted in 
chemistry education do not explicitly investigate students’ use of mathematics. This 
gap does not insinuate that quantum mechanics is taught in chemistry without 
mathematics, but rather that chemistry education research often borrows findings from 
physics education research to contextualize students’ use of quantum mechanics. 
Indeed, students’ difficulties with quantum mechanics is partially due to the 
mathematics it involves (Fox & Roehrig, 2015), which is unsurprising considering 
mathematics ability is often indicative of a student’s success in chemistry (Derrick & 
Derrick, 2002). Therefore, we began our study with the aim of investigating how 
physical chemistry students’ reason about spatial dimensions in relation to the particle-
in-a-box quantum mechanical model.  
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Particle-in-a-Box Model 
Briefly, the particle-in-a-box model is a mathematical model used in physical 
chemistry courses to introduce how translational movement is described by quantum 
mechanics. There are three variations of this model that describe a particle that is 
trapped in a one-dimensional, two-dimensional, and three-dimensional theoretical box. 
With this model, students are taught about the Schrödinger equation, which details a 
particle’s kinetic and potential energy by taking their sum, called the Hamiltonian, and 
multiplying it by a wavefunction which is an eigenfunction. The Schrödinger equation 
primarily involves the use partial derivates to describe the particles energy, and during 
instruction, students walk through the process of normalizing the wavefunction to 
produce practical equations for laboratory measurements. 
METHODS 
For our ongoing study, we were interested in interviewing students currently enrolled 
in a quantum mechanics physical chemistry course, however, these courses often have 
low enrollment and are only taught during certain semesters. To ensure we obtain 
saturation of themes from our sample of physical chemistry students, we decided to 
reach out to multiple chemistry departments within the University of Wisconsin 
System, which includes 13 institutions that range in size and level of degrees offered. 
We are currently in the early stages of data collection, and so far, reaching out to six of 
these institutions has yielded five participants. Students received $25 gift cards for 
participating in an hour-long, in-person interview. All involved researchers had 
completed training on ethics when conducting human-subjects research, IRB approval 
was provided to conduct this study, and students consented to participate in the project. 
We conducted semi-structured interviews that consisted of multiple parts: (1) a card-
sorting task in which students were prompted to sort equations and representations 
from the particle-in-a-box model (Figure 1); (2) a problem-solving task in which 
students were presented with real-world application questions, asking them to calculate 
the quantum energy of the electrons in a molecule. The molecule used in this context 
consisted of a chain of carbons (typical application of the particle-in-a-box model) 
bound to a ring of carbons (atypical). 

 

Equation D

Equation GEquation E

Graph JEquation H

Equation F

Equation B Equation C

Graph KEquation I

Molecule from Real-World Application

Equation A

Equations and Graphs from Card Sort
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Figure 1. The equations and representations used for the card sorting activity in the 
interviews. The labels for the equations were not presented to students but are included 
here for ease of discussion. 

In this study we used the knowledge-in-pieces (KiP) framework to inform our analysis 
(diSessa, 1993). KiP describes students’ knowledge as a collection of knowledge 
elements, that are constructed by an individual and when solving problems, these 
knowledge elements are activated as students make sense of specific tasks. To analyze 
the data, we processed the data by transcribing and refashioning the transcript, which 
included added parenthetical descriptions for context (e.g., including an equation’s 
name in place of “this”). These interviews were analysed inductively using narrative 
coding to generate preliminary themes.(Heisterkamp & Talanquer, 2015) For this 
conference proceeding, we focus our analysis on two interviews which were collected 
from the same university, Steve and Alex. 
PRELIMINARY FINDINGS 
When presented with the card sorting activity (Figure 1), Steve recognized a couple of 
the equations from instruction, “At this point…I know [Equation A and B] is the 
particle-in-a-box, and so one dimensional”. Upon recognizing the model as the 
particle-in-a-box, Steve began by grouping equations A, B, and C. His grouping of the 
equations by model (e.g., one-dimensional model, two-dimensional model, etc.) stayed 
consistent for the duration of the task. In comparison, when Alex was presented with 
the card sorting activity, she recognized, “They’re all wave equations for the most 
part.” When she began to create groups, she attended primarily to the variables that the 
equations included, “So, put energy stuff together for now… [Equations A, C, D, F, I] 
all have Planck’s constant.” After sorting the equations into groups, she saved the plots 
to be sorted last, “[Plot K is] the real question. I have no idea what is going on with 
[Plot K].” With her attention focused on the plot, she began to look at the axes, “Here’s 
some quantum numbers that probably would be nice to see … [Plot K is] energy in 
three dimensions. No, it’s two dimensions.” After seeing the plots’ dimensionality, she 
began to restructure her groups as, “graphical representation sorted by dimension, 
energy sorted by dimension, and just the plain wave equations sorted by dimensions.” 
In the second part of the interview, in which students were asked to calculate the energy 
of the lowest quantum energy level available to a molecule, both Alex and Steve took 
similar approaches. When Steve began to solve this problem, he recognized, “This is 
something we [were] talking about in class … this is very similar to the one-
dimensional wavefunction for the particle in a box,” and chose to apply Equation C. 
Alex also chose to apply Equation C, but because, “[it’s] the one that incorporates all 
the values I need. This isn’t asking about any sort of extra dimensions [like] all the 
other ones have. It’s no integration or derivation involved, so it’s very straightforward.” 
Here, both Alex and Steve’s initial impressions when grouping the equations continued 
to influence their problem solving. Though these guiding decisions pointed both of our 
participants to apply Equation C to solve this problem, their applications differed 
significantly specifically when deciding on the length parameter. Steve applied 
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Equation C by excluding the parts of the molecule that varied from the example he had 
encountered in class, “[that] just logically makes sense to me. The fact that it looks 
very similar to a problem we’ve seen in class. I honestly don’t know what to do with 
this [ring]. I’m just going to leave it out.” Whereas Alex included the length of the ring 
in one dimension, not mentioning the impact this assumption would have on her 
application. In the end, both students calculated a final value, however, after reflecting, 
Steve indicated more confidence in his answer in comparison to Alex, who stated 
“There’s one question answered … it’s just a guess.” 
DISCUSSION AND NEXT STEPS 
Though both of our students took similar approaches when solving these problems, the 
specific features attended to within the context played a significant role in their 
problem solving. Steve’s more holistic approach that involved focusing on the 
dimensionality of the equations, highlighting the connection between the 
dimensionality of the provided molecule and how it related to past problems (excluding 
the ring in the molecule). On the other hand, Alex initially attended to the variables 
involved in these equations but was not prompted to consider dimensionality until 
focusing on the graphs; with dimensionality not being a salient feature, her attention to 
spatial dimensions was not considered when applying the equations to the molecule. 
Instead, Alex attended to the amount of calculus that her application would require, 
choosing the equation that she knew would avoid more advanced mathematics such as 
integration or differentiation. Importantly, Alex was not the only student in our sample 
to express these concerns regarding the mathematics. Although not discussed here due 
to space constraints, our interview protocol also involved asking students questions 
regarding their perceptions of their preparation for the mathematics in physical 
chemistry, emphasizing the role of calculus (e.g., How well do you feel your calculus 
courses prepared you for the mathematics used in your other chemistry courses?). As 
part of this, our ongoing efforts for this project includes not only scaling up with 
additional data collection, but expanding our analysis to emphasize trends related to 
students’ experiences with calculus and its use in the chemistry curriculum. Given the 
role of physical chemistry as the capstone sequence in the chemistry curriculum, we 
are interested in students’ retrospective views about calculus and its application. 
Moreover, informed by our framework, we are focusing on the specific knowledge 
elements students use throughout the interview, including epistemic assumptions about 
the models employed and fine-grained ideas students associate with the equations and 
graphs (symbolic and graphical forms), particularly in relation to their interpretation of 
differential equations (Rodriguez & Jones, 2024; Sherin, 2001). With this work, we 
aim to highlight the ways students are expected to apply calculus while pointing to the 
need for further discussion surrounding the ways we can support students in feeling 
more comfortable with applying complex and abstract mathematical models.  
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Potential and limitations of resources for supporting students using 
mathematics in physics: a case study about differential equations 
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In the context of science students’ high failure rates at the beginning of university, we 
study resources supporting students facing difficulties which stem from differences 
between mathematics in mathematics and physics courses. Using the concepts of 
praxeology and didactic contract, we analyse a resource for students concerning the 
use of differential equations in physics. We determine what characteristics make it 
susceptible to support students and the potential and limitations of such resources. 
Keywords: Teaching and learning of calculus, mathematics for physics, curriculum 
resources for non-specialist students, praxeology, didactic contract. 
INTRODUCTION 
Difficulties faced by non-specialist students, especially students majoring in 
experimental sciences, are a key issue in the context of high failure rates at the 
beginning of university, particularly in France where our study takes place (French 
Ministry of Higher Education and Research, 2023). It is also increasingly investigated 
by research (González-Martín et al., 2021). One of the causes of these difficulties is 
the differences between mathematics in mathematics courses and mathematics as it 
appears in other science courses, in our case, in physics. Karam et al. (2019, p. 49) 
showed profound epistemological differences between mathematics in mathematics 
and physics courses. For example, mathematical work in physics is influenced by the 
systemic treatment of units: e.g., one cannot add up two quantities of different physical 
units. One of the researchers’ recommendations regarding these differences is to make 
them explicit to students. However, understanding these differences and bridging the 
gap between mathematics and physics is often left to the students. Remediating these 
difficulties remains a significant issue. In this context, we study resources used in 
France which were designed to make these differences explicit. 
THEORETICAL FRAMEWORK 
Within Chevallard’s anthropological theory of the didactic (Chaachoua et al., 2019), 
praxeologies model knowledge through a quadruplet [T, τ,	θ,	Θ] composed of a type of 
tasks T (e.g. ‘Determine the velocity’), a technique τ which can be used to solve tasks 
of that type (e.g. ‘Compute the derivative of the position’), a technology θ which 
justifies the technique (e.g. ‘The derivative of the position function is equal to the 
velocity’), and a theory	Θ justifying the technology. The technique can itself be 
composed of one or several types of tasks called ingredients of technique (e.g. 
‘Compute the derivative of a position’ is an ingredient of technique). Types of tasks 
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can be intrinsic, meaning they only appear as ingredients of techniques for other types 
of tasks, or extrinsic, meaning they appear as types of tasks themselves. 
Brousseau (1997) describes the didactic contract as a set of rules, often implicit, which 
describe the expected behaviours of the teacher and students relative to knowledge. For 
example, students expect and are expected to use the notion referenced in the title of a 
section or chapter when solving tasks within that section or chapter. The didactic 
contracts in mathematics and physics are different, for example, in terms of expected 
notations (e.g., in France, 𝑓’ in mathematics and !"!# in physics). 

BACKGROUND 
Difficulties caused by the differences between mathematics & mechanics 
In our previous work within physics, but in the specific case of mechanics, we 
identified three types of differences between mathematics in mathematics and 
mechanics courses, and we showed that students do face difficulties stemming from 
these differences (Hellio et al., 2025). First, in mechanics, most types of tasks that 
incorporate mathematics are intrinsic, meaning they only appear as ingredients of 
techniques. This leads to difficulties because students need to identify the mathematics 
tasks that they need to achieve to solve the extrinsic physics task. For example, in an 
exercise where students need to determine the velocity of an object, the technique can 
be to “compute the derivative of the position”, which incorporates mathematics (Brunel 
et al., 2015, p. 775) (Difficulty 1). Second, we noted techniques in mechanics which 
blend mathematics and physics. For example, to solve the type of tasks “determine the 
position of an object”, students must first recognise that there is a differential equation 
to solve and then solve it (Brunel et al., 2015, p. 774) (Difficulty 2). Third, the didactic 
contracts in mathematics and physics are different. For example, this causes students 
trouble in interpreting !"

!#
 as the derivative of 𝑣 as a function of 𝑡 (Hellio et al., 2025, 

for more details) (Difficulty 3). We consider that if a resource addresses these three 
difficulties, then it holds the potential to support students in the transition between 
mathematics in mathematics and physics. 
Presentation of the Maths4Sciences (M4S) resources 
The resources we study were created by a group of mathematics and physics teachers 
led by a researcher in physics education1. The group worked between 2017 and 2022 
and produced a series of quizzes to test and improve mathematics skills in a physics 
context. Alongside these quizzes, they designed 56 tutorial sheets on subjects ranging 
from “Using the Pythagorean theorem” to “Computing the sum of vectors” to provide 
the methods for solving the problems in the quizzes. The tutorial sheets are generally 
composed of one to two solved examples, followed by a “Method” section. The 
examples are in a physics or chemistry context, while the method is in no scientific 
context. We analyse one of these tutorial sheets named “Solving a first-order 

 
1 https://maths4sciences.ens-lyon.fr  
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differential equation by way of identification”2, which comprises two examples and a 
section regarding notations at the end. The first example (Ex. 1) of the tutorial sheet is 
about radioactive nuclei, and the second one (Ex. 2) is about the temperature of an 
incompressible system. We note that the potential of a resource depends on its use. 
Here, we analyse the Maths4Sciences sheets assuming students who use them do so on 
their own and to solve any exercise, not just ones from the designed quizzes. 
RESEARCH QUESTION & METHODS 
Our research question is: What is the potential and what are the limitations of an M4S 
tutorial sheet for helping students overcome the three identified difficulties? 
We start by analysing the types of tasks in the tutorial sheet and the associated 
techniques and technologies. We break the technique down to the ingredients 
composing it. Then, for each praxeology, we analyse potential didactic contract rules 
in the form of what students could infer from the context (name of the method sheet), 
the notations manipulated, and what aspects of the praxeologies remained implicit in 
the method sheet. We attach particular importance to what is implicit or explicit in the 
sheet, as making differences explicit may support students (Pospiech et al., 2019). 
RESULTS 
The tutorial sheet addresses all three of the types of difficulties. In the next three 
subsections, for each difficulty, we detail the characteristics of the tutorial sheet 
addressing it. To get a global view of the tutorial sheet, Figure 1 shows all types of 
tasks gathered from its analysis. A type of tasks appearing below another means the 
former is an ingredient of the technique of the latter. A full purple background shows 
the types of tasks for which there is a technique explicitly described. If there is no 
explicit technique, the background is shaded. 

 
Figure 1: Types of tasks appearing in the tutorial sheet3 

 
2The author’s translation of the tutorial sheet is available at the following link: https://bit.ly/3Z8eYrb. 
3For high-quality and black and white versions of Figure 1, see https://bit.ly/3Z8eYrb. 
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Intrinsic mathematical types of tasks appearing in physics 
The extrinsic type of tasks in both examples is a physics one: either “Determine the 
number of radioactive nuclei” (T0 in Ex. 1) or “Determine the temperature” (T0 in Ex. 
2). Mathematics appears as an ingredient of technique, for example, with “Solve a 
differential equation (DE)” (T2). However, we found no technique or technology 
showing how to recognise that the technique to determine each of these physical 
quantities is to solve a DE or why to use that technique. Moreover, we assumed students 
would have access to all 56 tutorial sheets, and since this sheet is named “Finding the 
solution of a first-order differential equation”, students must know there is a DE to 
solve to go look for this sheet. Finally, “Solve an algebraic equation” (T2.3.1 in Ex. 2) 
and “Compute a derivative” (T3.1 in Ex. 1) are, respectively, ingredients of “Determine 
the integration constant” (T2.3) and “Check the solution” (T3). 
Techniques blending mathematics & physics 
We present examples of techniques blending mathematics and physics in the sheet. 
First, in the case of “Recognize the terms” (T2.1), the Method section says: “Identify, 
in the physical system studied, the quantities corresponding to 𝑦, 𝑥, 𝑎 and 𝑏.” This 
blends mathematics notations (see the next section) and the use of the physics system 
described by the exercise. Second, the technique for the type of tasks “Determine the 
integration constant” (T2.3) uses the notion of an “initial” (in Ex. 1 and 2) or 
“particular” (in the Method) condition on the quantity studied, which involves finding 
this condition within the text of the physics exercise and solving an algebraic equation 
(T2.3.1 in Ex. 2). 
Different didactic contract rules in mathematics & physics 
The difference in didactic contract rules we previously identified between mathematics 
and physics were differences in notations. Here, the tutorial sheet incorporates 
“Recognize the terms” (T2.1) as an ingredient of “Solve a DE” (T2). This type of tasks 
makes the transition more explicit between the physics expression !$

!#
= −λ𝑁(𝑡) and 

its notations 𝑁 and !☐
!#

 and the mathematical expression a 𝑦’	 = 	𝑎𝑦 and its notations 𝑦 

and  ☐′ (Ex. 1), or between !%(#)
!#

= − ()
*+
𝑇(𝑡) + ()

*+
𝑇, and 𝑦’ = 𝑎𝑦 + 𝑏 (Ex. 2). 

Moreover, the final section, called “Caution: Variations in notations”, explains there 
are different common forms for a DE in mathematics and physics and how this changes 
the way the form of the general solution is expressed.  
CONCLUSION & DISCUSSION 
First, the tutorial sheet does not seem to support students in recognising there is a 
differential equation to solve because the students must already know they need to 
solve a differential equation to pick this tutorial sheet. We consider this to be a 
limitation of such resources. Moreover, even within the tutorial sheet, there is no 
explanation of how to recognise a DE in a physical context. We consider that resources 
which aim to support students facing Difficulty 1 must have a different structure or, at 
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least, within the sections on each mathematical notion, an explanation of how to 
recognise the notion in a physical context (Difficulty 1). Second, there are several 
instances where, through explicit techniques, the blending of mathematics and physics 
is supported. This more explicit blending of mathematics and physics has the potential 
to help students facing difficulties with techniques that incorporate both mathematics 
and physics (Difficulty 2). Third, we find that the tutorial sheet presents the common 
notations of both mathematics and physics. Following Karam et al. (2019), we argue 
that this explicit presence of notations from both disciplines may support students 
having difficulties stemming from the differences in didactic contracts (Difficulty 3).  
All in all, we posit there is great potential for resources supporting students specifically 
by making the differences between mathematics and physics explicit, notably in terms 
of the diversity in notations they have for shared objects, such as derivatives. We keep 
in mind that the goal is to make differences explicit without disconnecting the 
disciplines, which have deep-seated historical and epistemological connections. 
Moreover, it seems that more attention needs to be given to the recognition of intrinsic 
mathematical types of tasks in physics. 
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We examine where and when calculus concepts and skills appear in the first semester 

of introductory physics. Following similar work in other fields, we adopted the 

Calculus Concept Framework and used the framework to identify which concepts and 

skills appear in each section of the first twelve chapters of a standard introductory 

physics textbook. Results were collated and suggest uneven use of calculus concepts.  

Keywords: physics, mechanics, calculus, instructional practices, textbooks. 

In the United States, ‘university physics’ is taken by physical science and engineering 

students and is frequently referred to as ‘calculus-based.’ It has as pre- and co-

requisites two or more semesters of calculus. In this paper, we describe a number of 

data points from our work and that of others that together suggest that the nature of the 

relationship between calculus and calculus-based physics is in need of renewed 

examination, and that the shared assumptions of departments, textbook authors, and 

instructors might not reflect the lived experience of students.  

BACKGROUND 

Scholars in Physics Education Research (PER) have examined the use of mathematics 

in physics courses, for both introductory and more advanced levels, from a variety of 

perspectives. Redish and Kuo note that mathematicians and physicists use mathematics 

differently: while physicists load physical meaning onto symbols and equations, 

mathematicians tend not to (Redish and Kuo 2015).  

Biza and colleagues suggested that calculus in the disciplines could be a filter or 

scaffold: in the former case, calculus is used to determine who is qualified for later 

coursework; in the latter, it is useful as supporting knowledge to enhance success in 

later coursework (Biza et al., 2022). Several authors reported that students perceive 

differences between practices in physics and calculus. Hitier and Gonzalez-Martin 

(2023) reported that “in mechanics, ready-to-use formulas are provided, so students 

can solve these problems without using knowledge from derivatives nor thinking in 

terms of covariation.” Noah-Sella, et al. (2023) described differences in the ways that 

students perceive related problems in physics and calculus, including the perception 

that physics problems require ‘more thought’ than calculus. 

Several prior studies have investigated student understanding of concepts and skills 

from calculus in introductory mechanics. For example, researchers have described a 

relationship between a limited understanding of definite integrals and difficulties in 

physics, in contexts including kinematics graphs (e.g., Bajracharya et al., 2023). The 

conceptual understanding of integration needed in physics is often not an outcome of 

standard calculus instruction (e.g., Orton 1983). 
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In engineering, faculty assessed the value of calculus “for mathematical maturity more 

than just the actual calculus” content, because “the way [the engineering course] is 

taught, you can do it without calculus.” (Ferguson 2012, Faulkner, et al. 2019). 

Faulkner et al. (2019) reported that faculty teaching engineering courses felts that their 

students have difficulties with using and interpreting mathematical models; choosing 

and manipulating symbolic and graphical expressions; and using computational tools.  

Integration in physics courses is mismatched. 

Jones and colleagues have shown that most students leave calculus with a 

conceptualization of integrals as area under the curve (Jones 2015). However, more 

than half of the integrals in US physics textbooks used an adding-up-pieces 

conceptualization, and under 10% used area (Piña and Loverude 2019). 

Physics majors report limited use of calculus in introductory physics. 

In a prior study, Loverude (2017) reported on the perception of physics majors in a 

sophomore-level math methods course of the calculus used in their introductory 

physics courses. While there was considerable variation, the most common result was 

not encountering much calculus in introductory physics; one student described 

introductory physics as ‘just barely calculus-based.’ Comments suggested a strong 

focus on computing numerical answers to end-of-chapter textbook problems and that 

most of the calculus was done by the instructor in lecture rather than by students:   

The calculus that we used was mentioned once, and then the students were expected to just 

memorize the equations of motion instead of deriving them … 

…there were many calculus-based derivations that we weren't in any way required to know 

or understand. We only just used their results to do plug and chug style problems. 

STUDY OF CALCULUS CONCEPTS AND SKILLS IN MECHANICS  

Scholars in several disciplines have posed the question of where exactly calculus is 

used and what calculus concepts and skills are used in courses for which calculus is 

pre-requisite. Many prior studies have adopted the Calculus Concept Framework 

[CCF] (Sofronas 2011). The CCF was developed through interviews with experts and 

identifies concepts and skills essential to calculus understanding (the concepts and 

skills are the first two sections shown in Figure 1, respectively). The CCF has been 

used to used to investigate what concepts and skills from calculus were used in courses 

in differential equations (Czocher 2013), introductory engineering (Faulkner et al., 

2020), and general chemistry (McAfee and Rodriguez, 2024).  

In a recent study (Loverude, et al., 2024), we performed a similar analysis for 

introductory physics, investigating the research question: What concepts and skills 

from calculus and related mathematics are encountered by students in introductory 

mechanics, and when are they encountered? To limit the project and allow for 

preliminary discussion of results, we coded sections of a course text for calculus 

concepts and skills. Focusing on the textbook is only a proxy for what students might 

realistically encounter in the course, as instructors might increase or decrease the 
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emphasis on calculus in lecture or homework exercises. In subsequent work we will 

extend this analysis to later topics and seek to characterize instructor practice as well 

and document what calculus students encounter in class and in homework. 

Methods 

Three researchers coded chapters 2 through 12 of a standard physics textbook (Resnick 

et al., 2014). (Chapter 1 is purely a discussion of units.) We coded for instances of the 

concepts and skills from the CCF in each section. Codes were negotiated and clarified, 

and we added several extra categories that reflected elements of mathematical practice, 

including graphs or figures, the use of function notation, the use of the vector concept 

and unit vector notation, and explicit attention to units or dimensions.  By the end of 

the first-semester analysis, the agreement between coders was very high. For example, 

of 243 cells in the Chapter 11 spreadsheet, all three coders independently coded the 

same result on 236 (97% agreement). Results are shown in Table I. 

Results 

The most prevalent calculus concept was the derivative, appearing in 8 of the 11 

chapters and in 20 of the 62 sections (just over 30%). Integrals appeared in 5 chapters, 

and 11/62 sections (just under 20%). In contrast, there was not a single epsilon-delta 

proof. Limits appeared in only four chapters (and 9 sections) and sequences and series 

in two sections of a single chapter. Algebraic manipulations appeared in every chapter 

and 61/62 sections, and trigonometry in 10 of 11 chapters and 27 different sections. 

Chapter two (one-dimensional kinematics) was one of the highest in terms of CCF 

concepts and skills coded, and chapter 4 had the highest prevalence of derivatives, 

though fewer limits and no integrals. The chapters on Newton’s laws (5 and 6), in 

contrast, did not include a single limit, derivative, or integral. Indeed, after chapter 2, 

students might not see another integral in the course until chapter 7. While some of the 

skills and concepts identified in the CCF appeared rarely or not at all, other 

mathematical practices were more common. Units and vectors were considerably more 

prevalent than core CCF concepts of limits, derivatives, or integrals.  

The sequence of topics is mismatched to the sequence in calculus prerequisites, in 

terms of the use of calculus skills and concepts. Depending on prerequisite structures, 

students may be enrolled in first-semester calculus at the same time as introductory 

mechanics. However, the most calculus-intensive sections are early in mechanics; 

students first encounter integrals in Chapter 2, so the first or second week of the course, 

far earlier than integrals in Calculus I. Dot and cross products, Calculus III topics, can 

appear in first-semester physics. 

Function notation (e.g., v(t)) is used in beginning sections but then largely vanishes. 

There is some reason to believe that different usage of function notation is a tension 

point for students in introductory physics (Loverude 2023). 

DISCUSSION 

Despite the perception of calculus as necessary for physics, many sections of the 
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Table 1: Mathematics concepts and skills coded in introductory mechanics textbook. 

introductory physics textbook do not use calculus skills or concepts, and the presence 

of calculus is not uniform. Instructors and textbook authors might wish to consider the 

mismatch between calculus and physics practices and the sequences of topics.  

By focusing on mechanics, we have not included the significant calculus (including 

multivariable and vector-valued functions) in the electricity and magnetism portion of 

the course, which further stretch prerequisites. This will be a focus of future analysis. 

The frequency of concepts and skills in the textbooks might also not reflect the 

experiences of students. We have begun to probe the experiences of instructors and 

students at our university. We have also expanded our analysis to include other 

textbooks and other versions of the chosen textbook, to see the extent to which practice 

might change over time or chosen text. 
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Traditional calculus courses often fail to equip life science majors with the skills 
needed to model complex biological systems. UCLA's Life Sciences 30 (LS30) 
curriculum bridges this gap by focusing on modeling and simulation. To prepare 
faculty for teaching LS30, we developed workshops emphasizing pedagogy and team-
teaching in Year 1. Recognizing faculty struggles with the modeling-centric content, 
we redesigned the workshops in Year 2 to prioritize problem-solving and deeper 
engagement with LS30’s mathematical concepts. These adjustments underscore the 
value of content-focused professional development for faculty for the goal of enhancing 
mathematics education for life science majors. 
Keywords: mathematical modelling, faculty professional development, biology 
THE DISCONNECT BETWEEN CALCULUS AND LIFE SCIENCE MAJORS  
In the United States, graduates from life sciences majors outnumber physical science 
majors and are projected to see the fastest employment growth in decades (Okrent & 
Burke, 2021). Meanwhile, mathematics is central to understanding biological 
phenomena (Steen, 2005) but the mathematics most life sciences majors take is usually 
some traditional version of calculus, which hasn’t kept up with the evolving needs of 
the field (Wilson Sayres et al., 2018).  Both traditional calculus or “biocalculus” still 
focus on algebraic and analytic techniques. But modern life scientists seek to 
understand and predict complex systems (i.e., modelling physiological and 
environmental processes) that are driven by feedback loops – modelling and analysis 
of these systems is not possible with the techniques taught in calculus, because they 
are nonlinear systems. Life scientists need to be able to use technology, handle large 
datasets, engage in quantitative reasoning, work with simulations, and analyse and 
interpret dynamical systems – they need to model (Feser et al., 2013). 
This evolving disciplinary landscape raises the question What mathematics should we 
teach to life science majors? To address this content issue, UCLA developed the Life 
Sciences (LS30) curriculum, including the textbook Modeling Life (Garfinkel et al., 
2017), simulation labs, and homework tailored to life science themes. As summarized 
by Bennoun et al. (2023) and Garfinkel et al. (2022), LS30 emphasizes modelling and 
simulating biological systems, not just as examples to see at the end of a section but as 
the foundation to learning the mathematics required to explain and predict biological 
phenomena. Topics like bifurcations, chaos, and oscillations – typically reserved for 
advanced undergraduate or graduate-level study – are introduced in ways that are 
accessible to first-year biology majors. Many math faculty do not have the biological 
or mathematical background to appreciate the contributions of mathematical modelling 
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to biology as a discipline. So, even if introductory mathematics content is reformed for 
life science majors, few faculty members are prepared or confident enough to teach a 
modelling first curriculum. This knowledge gap presents a challenge: supporting 
faculty in confidently teaching advanced concepts like dynamical systems, modelling, 
and simulations in a way that wouldn’t require extensive mathematics prerequisites. 
To address this educational challenge, we launched professional development 
workshops to help mathematics faculty (re)learn the mathematics needed for life 
sciences and gain insights into biological processes. Participants ranged from 
experienced researchers in biological modelling to novices to the field. In this paper 
we share our experiences with these efforts, highlighting successes, challenges, and 
institutional roadblocks, aiming to inspire conversations on overcoming barriers and 
equipping faculty to transform mathematics education for life science majors. 
OUR WORKSHOPS 
Nearly all students enrolling in first-semester calculus at post-secondary institutions 
plan to major in life sciences or engineering (Bressoud et al., 2015). However, the 
typical calculus course favours the latter. Even a “biocalculus” course tends to use few 
examples from biology, giving more examples from geometry, physics, engineering, 
or even economics. The reason is that single variable differential and integral calculus 
cannot solve the kinds of problems that arise in biology. Biology’s problems are not 
about optimizing the area contained in a pen for pheasants given 1000m of fencing. 
Real quantitative challenges include managing predator populations, explaining 
genetic switches, and understanding cardiac arrhythmias. UCLA’s LS30 course 
replaces traditional calculus with a modelling-first approach, using nonlinear dynamics 
to address these biological questions. Students simulate solutions, interpret phase 
portraits, and adapt Python code, shifting focus from algebraic techniques to practical 
modelling skills and biological applications. 
This shift in content and emphasis entails faculty readiness to teach “change 
equations”, vector fields, Euler’s method, classification of equilibrium points, 
translating between phase portraits and time series, relationships between solution 
trajectories and initial conditions, limit cycles and attractors, bifurcations, bistable 
systems, and Hopf bifurcations, while having background knowledge of feedback 
loops, types of feedback in ecological systems, homoeostasis, oscillation and endocrine 
control systems. Our workshop’s goal was to provide just-in-time professional 
development for mathematics faculty’s content knowledge. We have previously 
reported on the success of the workshops in meeting the stated objectives of improving 
faculty content knowledge and confidence for teaching dynamical systems to first year 
biology majors (Czocher et al., 2024). In this report we summarize the two workshops, 
and focus on the rationale for the changes we made from one year to the next. 
We designed the workshops in concordance with best practices for faculty professional 
development. Effective professional development includes multiple kinds of sessions: 
engaging in content-focused investigations, readings and brief lectures, observing 
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cases of instruction, analysing instructional materials, and reflecting on student work 
(Math and Science Partnership Knowledge Management and Dissemination, 2010). 
Educational research at the secondary level has shown that pedagogical content 
knowledge (PCK) for teaching modelling has several interrelated dimensions: 
knowledge of what makes good modelling tasks, ability to cognitively and 
conceptually analyse those tasks, recognizing common student difficulties, knowledge 
of appropriate interventions in students’ work, assessing products of students’ 
modelling work, and navigating institutional barriers related to transforming to a 
modelling-focused approach (Borromeo Ferri, 2018; Greefrath et al., 2021).  
Using these principles, we created and hosted A Master Class in Modeling the Life 
Sciences, at Harvard University, in Cambridge, MA, which ran in 2023 and 2024. Each 
iteration of the workshop lasted one week and contained 35 contact hours. The 
workshops were facilitated by an interdisciplinary team: two mathematical biologists, 
a mathematics education researcher, and a university mathematics instructor 
specializing in active learning pedagogies. The workshops ran concurrently with 
Harvard’s Summer School, a program for high school seniors to study a variety of 
advanced and interesting topics they may not get access to at their schools. The 
Summer School offered a class on the Mathematics of Biological Systems, using the 
LS30 materials, taught by two Harvard preceptors.  
REFINEMENT FROM YEAR 1 TO YEAR 2  
In Year 1, we had assumed that faculty would benefit from the experience of teaching 
with a modelling-focused lesson. We had also assumed that, given their doctoral 
training in mathematics, that the mathematical content would be more straightforward 
for them than it turned out to be. The result was that the participants’ PCK was low, 
and they did not learn as much from the teaching experience as we had hoped. Our 
takeaway lesson was that no matter how much math someone knows, they may not 
know dynamical systems in a way that bypasses algebraic manipulations and the more 
procedural aspects of calculus – that is, the way that students would understand it.  
We responded to faculty’s suggestions from Year 1 by changing the focus of the 
workshop. In Year 2, we built the workshop around engaging with the content of the 
LS30 materials through a combination of lectures and problem-solving sessions where 
participants could work through the pivotal learning objectives laid out through 
homework items and lab problems – the same ones that students at UCLA and in the 
Harvard Summer School would see. To focus on problem-solving, we removed the 
team-teaching experience. We also invited a GTA from UCLA and 3 faculty from 
universities that had already adopted the materials to share their perspectives. We 
distilled the mathematics and biology content to five key themes that run through 
LS30’s approach: (i) The Art of Modelling (ii) Derivatives & Integrals from a 
Modelling Perspective (iii) Equilibrium Points & Stability (iv) Oscillations & 
Attractors (v) Chaos. Each day, for five days, participants read relevant chapters in the 
textbook, attended an interactive lesson on the mathematical and biological theme of 
the day, worked through the Python lab materials keyed to the lesson, and solved 
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homework problems from the theme. The organizational team were available 
throughout to answer content or pedagogical questions. We also scheduled purposeful 
time for discussion, reflection, and building professional networks.  
In a follow-up survey, faculty reported difficulties with concepts related to (Hopf) 
bifurcations, bistable systems, equilibrium points, and limit cycles & attractors as well 
as HPG systems, homeostasis, oscillation, and types of feedback in ecological systems. 
They reported that they were most familiar with “change equations” and ODEs, vector 
fields, the FToC, and classifying equilibrium points from both a mathematical and a 
modelling perspective. The most helpful sessions were the content lectures, 
observations of the live Harvard Summer School lessons, problem solving sessions, 
Python lab sessions, and the panel presentations from faculty teaching the course at 
other institutions. Participants reported they would have liked more time for sharing 
materials from versions of the course running at various institutions and more time to 
work through the student-facing activities with discussion about how instructors 
implement these. We infer that participants who have gone through the content portions 
of the workshop need additional practical guidance of “how this course looks” in the 
reality of the classroom. With respect to insights, two participants reported:  

“I didn't look at the book ahead of time, but I did work Lab 1. Based on the experience of 
doing that lab, I didn't get the sense that the course would really challenge my notions of 
what I thought a lower division math course could be. I was very mistaken. As a result, at 
every moment last week I was pondering the ‘mathiness’ of it all and letting my world 
expand.” 

“my biggest insights on this came when Eric said ‘this isn't just a better way to teach 
traditional calculus, this is a fundamentally different course based on what these students 
actually need.’ As the week went on […] I came to better understand WHY these topics 
are actually more important (there are consequences for not understanding dynamical 
systems and modeling).” 

We take these quotes as emblematic of the work that the LS30 materials and our 
workshop can do for changing faculty’s outlook on the introductory mathematics 
experience for life science majors. 
CONCLUSIONS AND FUTURE WORK 
Most workshops for professional development focus on innovating faculty pedagogy. 
While modelling pedagogies are important, we found that using LS30 materials poses 
special challenges to related to content. We were surprised at how difficult the concepts 
of limit cycles, attractors, bifurcations were. In fact, we encountered faculty reasoning 
hitting many of the same conceptual hurdles when translating between phase portraits 
and time series as we have observed with students. While faculty may be “quicker” at 
learning mathematics content than their students, learning new ideas can only be done 
through solving problems. Thus, we would caution others seeking widespread 
dissemination of their innovative calculus materials to build in time for faculty to 
“play” with the problems in the new curriculum. We found that the amount of contact 
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hours was appropriate, that faculty benefit from working with simulations and the 
Python labs, which gave them confidence in using those non-traditional materials. In 
the future we will run a third version of the workshop with focus on curating a database 
of materials and pedagogical notes to share with interested faculty. 
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Abstract. The author's doctoral research sought to characterize changes in a group 

of university mathematics teachers' conceptions of the causes of student errors. In the 

context of a mini-course on mathematics education, the participants reflected and 

discussed this topic, using theoretical references to analyze possible causes of errors. 

Some results are presented on the role of epistemological and didactic obstacles, 

semiotic transformations and misconceptions in the teachers' reflections. 

Keywords: epistemological obstacle, didactic obstacle, semiotic transformations, 

misconception, change of conceptions, causes of errors. 

INTRODUCTION 

Research on teachers' conceptions and explanations of the causes of errors in 

mathematics reveals significant differences compared to the frameworks of 

Mathematics education that seek to explain them critically. While some teachers 

attribute errors to students' lack of interest and preparation (Gagatsis & Kyriakides, 

2000), other factors pointed out include a lack of conceptual understanding, negative 

attitudes, deficiencies in prior education, traditional teaching, and reading problems 

(Ramírez, 2012). These explanations are based on teachers' beliefs about mathematics 

and its learning, which can negatively influence their understanding of the causes of 

errors. 

According to Ball, Thames and Phelps (2008), a key component of expert teaching in 

mathematics is the ability to analyze the sources of errors and deepen the 

understanding of students' learning through errors. In this sense, it was fundamental 

for the study to examine how teachers can incorporate technical references from 

Mathematics education in their analysis of the causes of errors, which could help 

them to improve their understanding and approach and therefore generate changes in 

their conceptions. 

RESEARCH, THEORETICAL FRAMEWORK AND METHOD 

In the doctoral research, the following question was answered: What changes in the 

conceptions of a group of teachers (in service) about the causes of errors in 

mathematics, of university students, occur from reflection, discussion and 

socialization, in specific focus group meetings, based on the analysis of theoretical 

referents of Mathematics education? 

The research was conducted in two phases. In the first phase, a group of 25 in-service 

university mathematics teachers [1] answered the initial inquiry questionnaire. In this 

questionnaire, participants were asked to characterize, based on their own experience, 
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some errors and their possible causes. Participants who expressed interest and 

commitment continued in the second phase of the research. In this stage, 4 focus 

groups were formed (3 members each); the teachers participated in a mini course of 

four sessions (1 session per theoretical referent). Each session included: an initial 

individual reflection on the possible causes of errors presented in student solutions to 

university mathematics activities [2]; an initial socialization of these reflections; the 

presentation of the theoretical referent by the researcher; and a final socialization to 

evaluate the relevance of the referent in the explanation of the errors analyzed. 

The transcribed information was analyzed using an inductive-deductive 

categorization (Navarrete, 2011) for each focus group, for each session and for each 

participant. Taking into consideration the objectives of the research and the literature 

on error analysis (Gagatsis & Kyriakides, 2000; Peng & Luo, 2009), 5 a priori 

categories were defined for the study of the teachers' conceptions [3]. To establish 

changes in the participants' conceptions, the criterion suggested by D'Amore & 

Fandiño Pinilla (2004) and Alsina (2012) was followed, which consisted of 

comparing the teachers' conceptions before and after the training program. In our 

research, this comparison was carried out in detail before and after each of the focus 

group meetings. 

The theoretical references studied were epistemological obstacles (Brousseau, 1976), 

didactic obstacles (Brousseau, 1976), semiotic transformations (Duval, 1993, 1999) 

and misconceptions (D'Amore, 1999). The term conception was adopted in the sense 

of Llinares (1996) as a range of teacher cognitions that includes beliefs and 

knowledge from experience. The change in conceptions was understood, according to 

Wilson & Cooney (2002), as their development or modification over time. It is 

assumed that changes in teachers’ conceptions can help improve their teaching 

(Bobis, Way, Anderson, & Martin, 2016) and student performance (Wilkins & Brand, 

2004). 

CONTEXT 

The participants in the two phases of the study are in-service teachers who have 

taught different mathematics courses at Colombian universities in the city of Bogotá 

and in the municipalities of Chía and Soacha. In addition, the teachers have diverse 

training and experience [4]. The participants have most of their teaching experience 

in the following courses: Basic mathematics (also called Precalculus), Differential 

Calculus and Integral Calculus. 

RESULTS AND DISCUSSION 

The teachers perceived as novel and significant the methodological potential of 

academically analyzing the causes of errors by means of referents from Mathematics 

education. Although they considered this framework pertinent (with some 

reservations) and showed partial attempts to incorporate it, a natural adoption in their 

analyses was not evident. This could be due to the fact that the participants are aware 
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of the need to study these references in depth and be able to adopt them in their 

professional practice. 

Some of the teachers recognize that their teaching decisions can hinder learning and 

even generate errors in mathematics for their students. This idea, conceptually 

aligned with the notion of didactic obstacle, emerges from the teachers' reflections 

based on their own experience. It is possible that this experiential familiarity 

facilitates the understanding of the didactic obstacle, in contrast to a potential lesser 

willingness to adopt the other theoretical referents addressed in the course. 

Epistemological obstacles, semiotic transformations and misconceptions are all new 

concepts for the participants. 

Several of the participants in the different focus groups tend to interpret the semiotic 

transformations of conversion and treatment in terms of processes associated with 

problem solving and algorithmic processes respectively. In addition, some of the 

participants considered that problem solving is a critical aspect of mathematical 

learning that should be given special emphasis in mathematics class. 

The misconception presented resistance from some participants because they 

considered that it did not properly explain the causes of the errors present in one of 

the tasks analyzed, or only partially explained them. Additionally, some participants 

recognize the existence of misconceptions in the students' conceptualizations (about 

mathematical concepts) that are also very difficult to remove. 

Although some participants in their reflections refer to historical facts that highlight 

the complexity of the evolution of mathematical ideas, they do not fully recognize 

their potential influence on mathematical learning. This observation could explain the 

participants' difficulty in identifying the potential of the epistemological obstacle as a 

tool for understanding the causes of certain errors. 

The study did not directly analyze the impact of changes in participants' conceptions 

on their classroom practices when addressing their students' errors. However, some 

professors drew attention to their difficulties in addressing student errors in depth in 

their classes due to time constraints imposed by the curriculum. This suggests a 

prioritization of adhering to the course schedule (or program) at the expense of a 

critical treatment of errors. 

The socializations in the focus groups revealed several factors that shape the 

participants' conceptions about the causes of errors. These factors could explain some 

of the difficulties in incorporating the notions of Mathematics education presented in 

the meetings and the resistance to conceptual change. Some of these factors are not 

directly related to the theoretical referents studied but the teachers attribute them 

significant influence as potential causes of errors. 

Participation in the study allowed teachers to become aware that a scientific approach 

to their students' errors in mathematics is possible and pertinent; it also enables some 

of these teachers to be willing to further their training in Mathematics education. In 
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other words, it can be said that the participants have changed their conception of error 

and its causes from a vision that, despite taking into account various factors that 

complicate their analysis (such as context, comprehension problems, among others) 

and that did not contemplate an academic approach, has led to an understanding of 

error as a component of mathematical learning, which can be critically studied with 

tools provided by Mathematics education. Additionally, the study suggests that the 

changes in the participants' conceptions are located in an intermediate zone between 

those authors who consider that the change in conceptions is a gradual process 

(Guskey, 2003) and the position of authors such as Liljedahl (2010) who have found 

that, under certain conditions, rapid and profound changes are possible. 

This study is aligned with international research on the specific knowledge of 

mathematics teachers about the causes of errors (Ball et al., 2008) and contributes to 

remedy the scarcity of studies in this area (Peng & Luo, 2009), which is especially 

critical in university mathematics. Finally, the relevance of deepening, in future 

research, the understanding of the impact of changes in the conceptions about the 

causes of errors on the practices of university mathematics teachers is emphasized. 

NOTES 

1. These courses are part of university programs in which mathematics is a fundamental part of their 

training, such as engineering or administrative economics programs. 

2. Student solutions to real activities (e.g., taken from assessments) were chosen. These solutions 

contained errors that can be understood and explained (at least partially) by means of the theoretical 

reference corresponding to the session. 

3. A priori categories are: error identification, error explanation, willingness to incorporate the 

referents of Mathematics education in their analyses, conceptions about the causes of errors and 

other factors that influence the analysis of errors. 

4. Among the participants, 10 have a master’s degree (4 in Mathematics education, 4 in areas 

related to Education and 2 in other areas) and 2 have a PhD degree in Mathematics. In addition, at 

the undergraduate level there are 2 mathematicians, 5 bachelor’s in Mathematics, 1 physicist, 1 

bachelor’s in Physics and 3 engineers. In Colombia, university bachelor’s degrees focus primarily 

on training in pedagogy and didactics, enabling professionals to work as teachers. 
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The Cauchy-Riemann (CR) equations are a pair of partial differential equations (PDE) 
that occupy a prominent place in courses on complex analysis, since they form the 
necessary and sufficient condition for a complex function 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) +
𝑖𝑣(𝑥, 𝑦) to be complex differentiable. Interestingly, they are almost identical to the 
conditions for a 2D fluid to be incompressible and irrotational. This is not a 
coincidence, as there are common historical roots between hydrodynamics and 
complex analysis. In this contribution, aspects of this common origin are explored, and 
pedagogical opportunities are outlined. It is argued that such debates can enhance 
students’ epistemological awareness of how mathematical knowledge is developed, 
especially concerning the fruitful interplay with physics. 
Keywords: Cauchy-Riemmann equations, Complex Analysis, Fluid dynamics, 
D’Alembert. 
IDEAL FLUID FLOW AND THE CAUCHY-RIEMMANN EQUATIONS 
For the pure mathematician, it can be surprising to find out that the very first time a 
complex variable function appeared in history was in d’Alembert’s groundbreaking 
work in fluid dynamics (D’Alembert, 1752). To understand this origin, we will first 
derive a pair of partial differential equations by imposing that a 2D fluid flow is both 
divergence- and curl-free. D’Alembert’s original derivation of these equations are quite 
difficult to follow due to his unfamiliar notation and physical reasoning. The important 
thing to keep in mind is that it is based solely on physical assumptions. The interested 
reader can find details of d’Alembert’s original derivation in Calero (2008, pp. 374-
399). 
Consider a planar fluid flow described by the velocity vector field 𝐯 = u(x, y)0̂ +
𝑣(x, y)2,̂ where 0̂ and 2 ̂are the usual unit vectors, not related to imaginary units (this 
“subtle” difference is crucial!). Suppose that the fluid is incompressible, meaning that 
the field has a vanishing divergence (𝛁 ⋅ 𝐯 = !"

!#
+ !$

!%
= 0) and irrotational, meaning 

that the field has a vanishing curl (𝛁 × 𝐯 = &"
&%
− &$

&#
= 0), i.e., the field is conservative. 

Rewriting these conditions, we obtain a rather peculiar-looking pair of partial 
differential equations: 

!"
!#
= − !$

!%
                                                  (1.1)  

 
!"
!%
= !$

!#
                                                    (1.2) 
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Aren’t these the famous Cauchy-Riemann (CR) equations, which need to be fulfilled 
for the function 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) to be complex differentiable? Well, 
not quite, because of the minus sign. But it is still a remarkable “coincidence” that 
could be pointed out to invite students to reason about possible connections between 
complex analysis and fluid dynamics. Moreover, being aware of the first appearance 
of the CR equations reverses the order of the common narrative, where hydrodynamics 
appears as an application of complex analysis (e.g., complex potentials). But does that 
mean that the CR equations should be named after d’Alembert? The answer a bit 
nuanced, as discussed below. 
CLEVER TRICK TO SOLVE A PAIR OF PDES 
After expressing these physical conditions, the problem is purely mathematical: find 
the functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) that satisfy equations (1.1) and (1.2), given certain 
initial and/or boundary conditions. In essence, D’Alembert showed that satisfying 
these equations is equivalent to assuming that 𝑣𝑑𝑥 − 𝑢𝑑𝑦 and 𝑢𝑑𝑥 + 𝑣𝑑𝑦 are exact 
differentials, respectively, i.e., 

!"
!#
= − !$

!%
		↔ 		𝑣𝑑𝑥 − 𝑢𝑑𝑦     is an exact differential   (2.1)               

					!$
!#
= !"

!%
			↔ 		𝑢𝑑𝑥 + 𝑣𝑑𝑦          is an exact differential   (2.2) 

Let us see why this is the case. By an exact differential we mean that there exists a 
(scalar) function of two variables 𝑓(𝑥, 𝑦), such that 

𝑑𝑓 = !&
!#
𝑑𝑥 + !&

!%
𝑑𝑦	                                 (3) 

The other ingredient needed to understand this equivalence is the so-called equality of 
mixed partials, which asserts that interchanging the order of taking partial derivatives 
of a function does not affect the result. Mathematically, this is expressed by 

!
!#
#!&
!%
$ = !

!%
#!&
!#
$                     (4) 

Is the equivalence expressed in (2.1) and (2.2) clear now? Let us start with (2.1), i.e., 
assume that 𝑣𝑑𝑥 − 𝑢𝑑𝑦 is an exact differential. Following (3), 𝑣 = 𝜕𝑓

𝜕𝑥 and 𝑢 = − 𝜕𝑓𝜕𝑦 , 
which according to (4) yields Eq (2.1). This seems rather confusing but is actually 
simple! The reader is invited to check the equivalence (2.2). 
Now we have a different, yet equivalent, way to formulate the same mathematical 
problem: find the functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦), so that 𝑣𝑑𝑥 − 𝑢𝑑𝑦 and 𝑢𝑑𝑥 + 𝑣𝑑𝑦 
are both exact differentials. D'Alembert's profound insight was to find a way to 
“gather” these two expressions in a “single” entity, that could be integrated. He did that 
by manipulating complex numbers. 
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IMAGINARY PARTS DESTROY THEMSELVES 

Here is his line of reasoning. If 𝑢𝑑𝑥 + 𝑣𝑑𝑦 is an exact differential, so is 𝑢𝑑𝑥 + 𝑖𝑣 '%
(

, 
where 𝑖 is the imaginary unit.1 Similarly, if 𝑣𝑑𝑥 − 𝑢𝑑𝑦 is an exact differential, so is 
(multiplying by 𝑖) 𝑖𝑣𝑑𝑥 − 𝑖𝑢𝑑𝑦, which is equal to 𝑖𝑣𝑑𝑥 + 𝑢 '%

(
. Adding 𝑢𝑑𝑥 + 𝑖𝑣 '%

(
  

and 𝑖𝑣𝑑𝑥 + 𝑢 '%
(

 results in (𝑢 + 𝑖𝑣)(𝑑𝑥 + '%
(
). Now it is worth taking a moment to 

contemplate this last expression. 
The manipulations of this last paragraph seemed arbitrary, pointless, perhaps even 
forbidden, but the end result is suggestive. D’Alembert managed to “gather” the two 
functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) in a single entity, the complex function 𝑢 + 𝑖𝑣. Thus, if 
(𝑢 + 𝑖𝑣)(𝑑𝑥 + '%

(
) is an exact differential, then 𝑢 + 𝑖𝑣 is a function of 𝑥 + %

(
 (or of 𝑥 −

𝑖𝑦), which appears to be a complex variable function. Now, if instead of adding, we 
subtract 𝑢𝑑𝑥 + 𝑖𝑣 '%

(
  and 𝑖𝑣𝑑𝑥 + 𝑢 '%

(
, we obtain (𝑢 − 𝑖𝑣)(𝑑𝑥 − '%

(
), which leads to 

the assumption that 𝑢 − 𝑖𝑣 is a function of 𝑥 − %
(
.  

For someone versed in modern complex analysis, it is hard to understand what 
d’Alembert is trying to achieve. Here is an opportunity to encourage students to discuss 
what d’Alembert is up to with these manipulations, and what would it mean at the time 
to treat 𝑢 + 𝑖𝑣 as a function of 𝑥 + %

(
 . The details in the original are a bit complicated, 

but, in essence, he is expressing the function in terms of its complex conjugate to get 
rid of the imaginary parts.  

Notice that d’Alembert is assuming that 𝑓(𝑧) = 𝑓(𝑧̅);;;;;;. For Euler, this is the 
fundamental theorem of complex numbers (Klein, 1959, p. 627) and he used it to solve 
evaluate several (real) integrals. However, 𝑓(𝑧) = 𝑓(𝑧̅);;;;;; is not generally true in modern 
complex analysis. This contradiction has great pedagogical potential. The crucial 
difference is that complex functions are not entities yet, and the whole point is to 
manipulate them so that the “imaginary parts destroy themselves”. After all, physical 
quantities, such as velocity components of a vector field representing fluid flow, should 
always be real. 
COMPLEX NUMBERS HAD NO GEOMETRICAL MEANING 
For real functions, we usually have a good geometrical understanding of 𝑓′(3) = 2, but 
what does, e.g., 𝑓′(1 + 𝑖) = 3 + 2𝑖 mean? A powerful way to visualize the derivative 
of a complex function is the notion of amplitwist (Needham, 1997), which interprets 
the derivative as a local amplification and twist of vectors at a point in the complex 
plane. 2 If 𝑓′(𝑧) exists at point 𝑧, it means that every infinitesimal variation 𝑑𝑧, from 𝑧, 

 
1 D'Alembert wrote √−1 in the original. Of course, multiplying and dividing by the same number (𝑖) does not change the 
expression, but at this moment it is perfectly fine to ask oneself what is the point of doing this. 
2 Wonderful animations of a complex derivative are found in https://www.youtube.com/watch?v=0CHZMY02Dhk and 
https://www.youtube.com/watch?app=desktop&v=b8_3PFjiJvY. 
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has the same corresponding scaling and rotating factor given by 𝑑𝑓 = 𝑓′(𝑧)𝑑𝑧. It can 
be shown that this only occurs when the CR equations are satisfied. 
However, when we compare this with d’Alembert’s (and Euler’s) use of complex 
functions there is an important link missing, namely the geometrical interpretation of 
complex numbers as vectors in a plane, which came only in the early 1800’s (Andersen, 
1999). It is quite instructive to learn that complex functions appeared before the very 
geometrical interpretation of complex numbers! 
Let us conclude by addressing the original question: should be CR equations be named 
after d’Alembert? Although it seems tempting to assert that studies on fluid dynamics 
were crucial for the development of complex analysis, they were probably not so 
influential. Indeed, it was only with Cauchy and Riemann that complex functions 
became entities, where complex differentiation and integration were formally defined 
(Bottazzini & Gray, 2013). This is in stark contrast with d’Alembert and Euler, for 
whom the complex derivative did not even make conceptual sense, mainly because 
complex numbers did not have a geometrical interpretation yet. Thus, the CR equations 
should not be named after d’Alembert. 
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Almost all science, technology, engineering and mathematics undergraduates take 

undergraduate calculus, but the traditional applications of calculus in most textbooks 

are not equally relevant to all majors. We propose that incorporating a research 

experience where students must investigate and apply calculus in the context of their 

chosen field will make the content more meaningful. The purpose of this investigation 

was to determine to what extent such a project in a flipped introductory calculus 

class benefitted student participants. Overall, participants found value in the project, 

and felt that it and the discussion-based flipped classroom deepened their 

understanding of introductory calculus concepts. 

Keywords: introductory calculus, perceived utility, course-based research 

experience. 

INTRODUCTION 

There has been a nationwide effort to update undergraduate STEM education, 

particularly calculus, to better align with how individuals learn (Ellis-Hagman, 2021; 

Viera, 2019). These efforts stress the importance of involving undergraduates in 

research (AAAS, 2011). Research shows that undergraduate research experiences 

significantly improve students' cognitive abilities, emotional well-being, and 

psychosocial development, leading to increased intention to pursue further education 

or careers in science (Lopatto & Tobias, 2010). To provide students with 

opportunities to get involved in doing research, approaches such as Course-based 

Undergraduate Research Experiences (CUREs) were developed (Wei & Woodin, 

2011). The general characteristics of a CURE are a scientific approach to a novel 

problem, student-led discovery, iteration, collaboration, and a research contribution 

(Beck et al. 2023), though not all advocates of CUREs agree that the contribution 

needs to be in the form of a publication and argue that a discovery novel to the 

students is sufficient, particularly in CUREs in introductory classes (Dolan, 2016); 

we take the latter position for the purposes of introductory calculus. Dolan (2016) 

highlighted many benefits of CUREs, such as providing opportunities for students to 

make discoveries, improving persistence in STEM, and integrating teaching and 

research efforts. CUREs have been well developed in scientific fields, but there is a 

lack of Math CUREs in the literature. 

The purpose of this study was to investigate the perceived benefits of a CURE in a 

modified introductory calculus class. Since almost all STEM majors take introductory 

calculus, we argue that it is paramount to make this course as relevant as possible for 

all majors, and research projects tailored to students’ interests and majors may 

increase the relevance of calculus to STEM majors. The research question that guided 
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our inquiry was: How do students perceive the value of a CURE project in 

comparison to other components of a student-centered calculus course? 

METHODS 

In Fall 2023, there were two sections of Calculus I (16 and 28 students). In Spring 

2024, there was one section with 13 students. Each section met five times a week for 

50 minutes per class session. All three sections were flipped classrooms. Students 

were offered pre-recorded video lectures and materials by the professor before the 

meeting session. During the class meetings, students were split into groups of three to 

four to discuss problems prepared in advance with material covering the previous or 

current week(s). Then, students communicated their work on the problems with other 

groups or discussed them on the board with the rest of the class.  

The semester-long research project aimed to involve students in working in groups to 

solve a problem from students' major using Calculus I concepts in at least one of the 

key steps in the solution. Students formed groups of three to four individuals from the 

same major to work on a project problem. Each group chose or created their own 

project problem. For example, the project 'Water Level Management System for H2O 

Mermaids Co.' aimed to design an automatic system for monitoring and controlling 

the water levels in a spherical reservoir to provide a reliable supply during 

emergencies. Students calculated the volume of a spherical reservoir by using the 

integration concept to determine key water levels. With the Pythagorean Theorem, 

applying the Method of Disks, a Calculus II concept (easily understood by Calculus I 

students), students obtained the area of vertical slices of the tank to calculate the 

volumes required for controlling water collection. In another project, 'Analysing RL 

Circuit Dynamics,' students showed that by applying Calculus concepts, one can 

better understand electrical systems. They explored how 'current' changes over time 

in RL circuits by studying an elementary differential equation derived from 

Kirchhoff's voltage law and then solving it using 'separation of variables' and 

integration. Students also calculated how the circuit responds at specific intervals.  

The theoretical framework for this study was situated expectancy-value theory 

(SEVT), which posits that student motivation is a combination of a learner’s 

perceptions about expectations for success, their ability, the value of the task, and any 

negative evaluations (costs) of the task (Eccles & Wigfield, 2020). This inquiry 

primarily focused on the task value and cost components of the framework. Based on 

our prior research with students’ perceived value of course components (Celik & 

Dibbs, 2024), we anticipated that most of the perceived value would be on lectures 

and discussion, with the project receiving less perceived value overall because it 

extended rather than supported the learning of students. 

At the end of each semester, participants were invited to participate in a semi-

structured interview about their perceptions of the course components based on the 

components of SEVT. Seven participants, five male and two female, chose to 

participate in the interviews across the two semesters. Their majors were electrical 

138



  

engineering (3), mathematics (2), chemistry (1), and computer science (1). After 

transcribing the interviews, we parsed the participant responses into our unit of 

analysis, a statement, so that each statement represented a single idea. These 

statements were then assigned three levels of value codes. The first code assigned to 

each statement was a domain code, which identified which course component a 

participant was discussing. The second code assigned to all statements was a value 

code; the statement was characterized as positive, neutral, or negative regarding the 

course component. For example, the statement “My project was about controlling the 

water level in a water tower,” would have been coded as (project, neutral). For the 

purposes of this paper, we did not report neutral statements due to length limitations, 

but all of the neutral statements consisted of factual descriptions of course 

components without value judgments attached. If a student made an explicit 

statement that a course component supported their learning, a third emphasis code 

called support was added to the code of the statement. The two authors initially coded 

all statements independently and then reconciled the codes to 100% agreement 

through discussion. 

FINDINGS 

The project was the most discussed course component in the interviews (Table 1), 

and all seven participants spent significant interview time discussing the project. The 

neutral comments in the analysis were elevated because all participants gave a 

description of their project topic without a value judgment; without those statements 

the positive and neutral comments about the project are approximately equal. 

Interestingly, the project was tied for the second most support codes among the 

course components with instructor actions (things the instructor did, like asking 

questions during class to facilitate learning) and behind only watching the instructor’s 

lectures. 

Domain Code Positive Neutral Negative Total 

Support 

Total 

Project 9 18 5 32 4 

Other 

Assignments/Recitation 7 12 2 21 0 

Discussion 8 8 3 19 1 

General 9 9 0 18 2 

Lectures 6 11 0 17 4 

Instructor Actions 8 0 1 9 5 

Office Hours 0 0 1 1 0 

Total 47 58 12 117   

Table 1: Summary of participant codes 
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All participants made at least one positive statement about the project; with two 

major themes emerging. Other than noting the project helped participants learn 

current material, positive comments also indicated that the project had two main 

benefits. Three participants felt that their project helped them relate calculus to the 

real world, which in turn helped them find the material more relatable, such as 

Participant 4 in her interview: 

It put it in a real-world scenario, which is a very different perspective, which helped a lot. 

And I've noticed that if a teacher will explain how a calculus problem or a math problem 

in general could be used in real life, it gives a different perspective on how, basically, 

why we're learning this. And that helped a lot, understanding how there is connection, 

even though it doesn't seem like there's any connection at the moment. 

The remaining participants found more immediate benefits; their project helped them 

see the relevance of calculus to their major, such as Participant 7, a computer science 

major, in his interview: 

Yeah, I guess it gave me, I already understood how math plays a part into things. I know 

how it's included in the sciences. It's contributed to all this stuff, but it also, for us, we 

focused on calculus and computer graphics. I guess it taught me specifically that it's just 

that we take things for granted. If it wasn't for calculus, they wouldn't have been able to 

develop software that immediately calculates interactions between objects or graphics, 

especially.  

Only three participants made a negative statement about the project, even with 

probing. Four of the five negative statements were about having to limit the scope of 

the project because of limited knowledge in the major, as Participant 3 explained in 

his interview: 

We really wanted to do an actual electrical engineering problem instead of more of a 

finance problem. But we, you know, we're kind of, kind of right at the beginning. So 

we're not super familiar with this, with like electrical engineering stuff like, like how 

derivatives are involved in it and all this other stuff. So we kind of had to come to the 

compromise of a finance problem. 

DISCUSSION 

Overall, participants saw a surprising amount of value and limited costs in the 

research project embedded into introductory calculus. Participants felt that the project 

supported their learning as much as the lectures, and only explicit teaching by the 

instructor was seen as making a larger contribution to their learning throughout the 

semester. Participants found that the project helped them relate to later material in the 

course, relate calculus to their major, and relate calculus to situations they would 

likely encounter in their future careers. Even most of the negative comments 

indicated some support for the project, since participants would have preferred to do 

a project larger in scope that related even more closely to their chosen field, but were 

limited by their current knowledge. 
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Although our research project does not strictly fit the definition of a CURE, we argue 

like Dolan (2016) does; in introductory calculus it is sufficient that students make 

connections about mathematics beyond that of the standard curriculum to 

introductory calculus topics. All participants found at least some positive benefit 

from their research project, regardless of achievement level. Henderson and Kose 

(2018) suggested that participation in CUREs benefits average to lower achieving 

students the most, and our findings tend to agree.  

There are few limitations to our inquiry: the number of participants is fairly small, 

and not as diverse as we would prefer. Our findings are significant because there have 

been few CUREs in introductory mathematics courses, and participants in previous 

CUREs reported their satisfaction with the CURE experience in surveys rather than 

in interviews. Future work on mathematics CUREs should focus more on refining a 

model for CUREs in the calculus sequence, possibly in multivariate calculus. 
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Derivatives are a key concept in both single variable and multivariable calculus that 
are vital for students across disciplines to understand. Rates of change arise in many 
fields and everyday life. Researchers have been studying how students think about the 
components of the derivative for decades, but there is less known about the connections 
students make between these components. In this study, university calculus students 
created concept maps–visual representations of connections–which we analyzed using 
homology groups. We argue that homology is an innovative and useful tool for 
analyzing concept maps, complementing previous analyses conducted via qualitative 
techniques or scoring systems.  
Keywords: Concept maps, derivatives, students’ practices, topological data analysis.   
Derivatives are a key concept in calculus 1 (single variable calculus) and calculus 3 
(multivariable calculus). Sometimes calculus 3 students say they remember derivatives 
but that they “never understood it and don’t think it’s important.” This statement is 
from a calculus 3 students’ reflection survey after a derivative activity. Since rates of 
change appear in all parts of life, such as the velocity at which cars travel or how 
quickly a medication breaks down in the body, they are essential for calculus students 
across disciplines to understand.  
To examine the different ways in which derivatives can be thought about and how they 
are connected, we turn to Zandieh’s (2000) and Wagner et al.’s (2015) frameworks. 
Zandieh’s (2000) framework can be used to analyze the conceptual understanding of 
derivatives, and Wagner et al.’s (2015) extend the original framework to aid in 
analyzing the computational understanding of derivatives—two types of understanding 
necessary for students to succeed in mathematics courses (Rittle-Johnson, 2017). 
Successful students see mathematics as connected ideas (OECD, 2013). Concept maps, 
“diagrammatic representations of ‘meaningful’ relationship between concepts” 
(Watson, 1989), can be used to visualize these connections students generate at one 
point in time. Concept maps have been used since the 1970s (Novak & Cañas, 2006), 
in early childhood education (Birbili, 2006) through higher education (Mitra et al., 
2023). Despite this, there is little recorded usage of concept maps in mathematics 
education (Evans & Jeong, 2023). Concept maps are often analyzed both qualitatively 
and quantitatively or strictly qualitatively (Asl & Koca, 2004). The quantitative 
analysis method that is often used is some kind of scoring system, of which there are 
multiple (Ekinci & Şen, 2020). This study aims to expand the use of concept maps in 
mathematics education and investigate new ways that mathematics education data, 
specifically concept maps, can be analyzed. The new method offered here, analyzing 
via homology groups, is a method that is part of the broader idea of topological data 
analysis (TDA). Homology groups, described below, and TDA process high-
dimensional data and give insights into the shape of data (Taiwo et al., 2024). 
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RESEARCH QUESTION 
What insightful information about students’ connection-making do homology groups 
give when used to analyze student-generated concept maps? 
METHODOLOGY 

This study was conducted at a large R1 public university in the Southeastern United 
States. Data was collected from students who were enrolled in calculus 3 in 2024. 
These classes are typically taught in a 2-2 lecture recitation format. That is, twice a 
week ~250 students attend a lecture with the instructor of record and the other two 
days, students meet with a graduate teaching assistant in classes that have ~32 people. 
Some of these classes are also taught in a strict “lecture” format, meaning that four 
days a week, the entire class meets with the instructor of record. These classes usually 
have 90-120 students and are taught by faculty.  
The data was collected at a supplemental instruction session that students attended 
voluntarily. At this supplemental instruction session, students created a concept map 
using up to 23 terms from a word bank. These 23 terms can be seen in Figure 4, and 
are derived from Zandieh’s (2000) and Wagner et al.’s (2015) theoretical frameworks. 
In this report, three examples of student-generated concept maps are analyzed, 
illustrated in Figures 2, 3, and 4. To reference the creators of these concept maps, we 
will use the aliases Anna (Figure 2), Emma (Figure 3), and Lisa (Figure 4). Note that 
these aliases do not necessarily correspond to the gender of the creator. 
The concept maps were analyzed using homology groups, a mathematical tool to detect 
“holes.” Homology is an idea from algebraic topology; using abstract algebra to study 
topological spaces (Hatcher, 2001). These groups measure the dimensionality of the 
connections displayed in the concept maps and give information about the 
disconnectedness. Homology is denoted as 𝐻! where 𝑖 is the dimension. It is computed 
over the set of all integers, ℤ. The vertices/terms are the objects that make the zeroth 
dimension. The edges/connections are the objects that make up the first dimension. The 
triangles formed by three adjacent vertices and the three edges that connect them make 
up the second dimension. The tetrahedrons formed by four triangles make up the third 
dimension. Examples of these can be seen in Figure 1. This continues as higher 
dimensions are considered.  

 
Figure 1: Objects in zeroth, first, second, and third dimension (read left to right).  

RESULTS 
While we computed the homology groups algebraically (Hatcher, 2001, p. 105) of each 
concept map, here the homology of the concept maps is discussed geometrically. In the 
zeroth dimension, 𝐻" = ℤ#, 𝑛 is the number of connected components in a concept 
map. In the first dimension, 𝐻$ = ℤ%, 𝑚 is the number of cycles present that have 
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more than 3 vertices, i.e. not triangles. We call these “holes.” These are the only 
homology groups present in the three concept maps considered.  
Figure 2 shows Anna’s concept map that is one component; that is, all vertices are 
connected, you can reach one vertex from any other by following along the edges. 
Figure 2 is made up of 19 vertices, 24 edges, and has no holes. It has	𝑯𝟎 = ℤ, 𝑯𝟏 = 0, 
𝑯𝟐 = 0,𝑯𝟑 = 0,	and 𝑯𝟒 = 0	. 

 
Figure 2: Anna’s single component example.  

Figure 3 shows Emma’s concept map that is two components and has no holes. It is 
comprised of 14 vertices and 12 edges.	It	has	𝑯𝟎 = ℤ𝟐	and	𝑯𝟏 = 𝟎.	 

 
Figure 3: Emma’s two-component example.  

Figure 4 show’s Lisa’s concept map that is four components and has one hole. It is 
comprised of 23 vertices, 26 edges, and six triangles. It has 𝑯𝟎 = ℤ𝟒,  𝑯𝟏 = ℤ, and  
𝑯𝟐 = 𝟎.  

 
Figure 4: Lisa’s four-component example. 

DISCUSSION AND CONCLUSION 
Each concept map has different homology groups in the zeroth dimension. This 
demonstrates how varied the complexity of connections can be, even when examining 
only three students’ concept maps. At present, we have no data to suggest that certain 
homology groups arising at varying stages of the learning process are better for 
learning.  
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Anna having 𝑯𝟎 = ℤ means that all the terms she considered are connected in some 
way. Emma has double the number of components (𝑯𝟎 = ℤ𝟐), and even still, Lisa has 
quadruple the number of components (𝑯𝟎 = ℤ𝟒). Emma and Lisa having more distinct 
components indicates more disconnectedness across all terms, but it does not give 
information on the connectedness within each individual component. To learn about 
the connectedness within each component, we can turn to other homology groups, 
including 𝑯𝟏. 𝑯𝟏	gives the number of holes. Holes represent where connections could 
have been made (to form triangles) but weren’t. Anna and Emma have 𝑯𝟏 = 𝟎 (no 
holes) while Lisa has 𝑯𝟏 = ℤ (one hole). This gives us much more insight into the 
connections students identify. We can see from this calculation that Lisa has instances 
where more connections could have been made. To learn even more about the 
connectedness within each component, we can turn to even higher dimension 
homology groups, 𝑯𝒏 with 𝑛 > 1.  
Anna was the only student who made connections in any degree larger than two. She 
has 𝑯𝟒 = 𝟎, which shows she made connections in the fifth dimension but had no 
“holes” in that dimension. Emma and Lisa both lack higher dimensional connections. 
It is expected that an expert’s concept map would be more like Anna’s in terms of the 
dimensions of connections that are made. All three concept maps examined here also 
used a different number of terms. This gives even more insight into what students deem 
to be valuable information about the derivative. It’s possible that Emma only used 14 
different terms because these were the most important to her at the time. Furthermore, 
Lisa used all the available 23 terms because she thought all of them gave insightful 
information.  
This demonstrates that one can take many different perspectives when examining the 
information arising from a homology group analysis. This initial analysis using 
homology opens many doors for future exploration and shows that homology is an 
innovative and useful tool for the analysis of concept maps. It begs the question, “is 
there an ideal 𝑯# for learning?” In the future, more information about the homology 
groups of concept maps could help establish if there is one type of connection that 
should be prioritized to optimize university calculus students’ learning. It could also 
give insights into whether students in different disciplines could benefit from having 
different homology groups in their concept maps based on what is important in their 
chosen fields. For example, mathematics majors may benefit from connecting the 
symbolic formalism while engineering majors may have more use for the connections 
between the applications of the derivative like velocity and acceleration. When the 
homology groups and objects (vertices/terms, connections, etc.) in each dimension are 
considered in their totality, information about what types of connections are present in 
students’ minds may be gleaned, allowing for trajectories of growth to be identified. 
This leads us to believe that other TDA methods, like persistent homology, may be 
useful in future analyses of student-generated concept maps.  
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In this paper, we explore undergraduate engineering students’ covariational 

reasoning in dynamic rate of change tasks that include linear dynamic animations 

and focus on how students elicit information from the animations. Eleven 

undergraduate engineering students’ responses on two tasks about rate of change 

along with think-aloud and stimulated recall interviews are analyzed. 

Keywords: rate of change, covariational reasoning, dynamic visualizations. 

INTRODUCTION 

Rate of change is a foundational concept in calculus (Thompson, 1994). An 

understanding of the concept of rate involves creating an image of change in 

relevant quantities, coordinating changes in both quantities, and creating an image 

of the simultaneous covariation of the quantities (Carlson et al., 2002; Thompson, 

1994). To capture students’ understanding of rate of change (and many other 

calculus concepts), covariational reasoning is highly relevant. Covariational 

reasoning is defined to be the cognitive activities involved in coordinating two 

varying quantities while attending to ways in which they change in relation to each 

other (Carlson et al., 2002, p. 354).  

Previous research reports show students’ difficulties in reasoning about rate of 

change in different settings such as dynamic situations, graphical contexts, and 

non-kinematic situations. In graphical and non-kinematic situations respectively, 

Jones (2017) and Rodriguez and McAfee (2023) report that students invoke time as 

a quantity in rate of change problems even when time is not involved. Jones (2017) 

also noted that some students experience difficulties in interpreting the derivative 

values and interpret them as values of the quantities rather than as rates of change. 

In graphical contexts, students pay attention to patterns of the graphs, interpreting 

rate of change as graphs’ steepness while ignoring the axes (Rodriguez & McAfee, 

2023). The researchers point out the need to use diverse contexts in rate of change 

tasks to improve students’ comprehension. In dynamic situations, Carlson et al. 

(2002) found that even high-achieving students struggle with reasoning about rate 
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of change. Carlson and colleagues suggested that physical enactment of dynamical 

phenomena could present opportunities for students’ reasoning and understanding 

of rate of change and other concepts in calculus. Generally, many researchers have 

pointed out that over-reliance on static images and algebraic approaches for 

presenting dynamic relationships in calculus limits students’ comprehension (Hong 

& Lee, 2022).  

THEORETICAL BACKGROUND 

The concept of covariational reasoning (cf. Carlson et al., 2002) is central in this 

paper. In addition, we draw upon Elby’s work (2000) who argues that the context 

may cue activation of some intuitive knowledge elements in learners, which Elby 

refers to as what-you-see-is-what-you-get (WYSIWYG), e.g. a horizontal line 

means stillness which may be correct in some situations but can lead to 

misconceptions in other contexts (such as in velocity-time graphs). The intuitive 

knowledge elements such as WYSIWYG may be activated due to compelling 

visual attributes in a context. Ainsworth (2006) notes that the learners need to learn 

to ignore the intuitive knowledge to interpret representations. 

METHODS 

This paper draws upon a research project that employs multiple methods including 

think-aloud protocol, stimulated recall interviews, and eye-tracking
1
 for exploring 

students’ covariational reasoning in visualization-based tasks. Eleven 

undergraduate engineering students solved 12 multiple-choice tasks each on 

different aspects of rate of change. In this paper, we report on students’ work on 

two tasks that included linear dynamic visualizations, which could be paused and 

replayed but did not allow for the manipulation of variables (see the tasks below). 

The students solved each task in silence on a laptop while their eye movements 

were tracked. They explained their reasoning aloud after clicking on one response 

option of their choice. The stimulated recall interviews were conducted afterward. 

Each student is assigned a unique number (P1–P11) and we refer to their respective 

numbers in the text.  

The two tasks, cannon cow and frozen yoghurt, are adapted from Calculus Videos 

Project (https://calcvids.org/videos/). The cannon cow task (Figure 1, left) 

depicts a cow being shot from a cannon. The cow is shown to move upwards after 
                                            
1
 Note that eye-tracking data is not included in this version as we are in initial stage of analysis. 

148

https://calcvids.org/videos/


3 
 

being shot, reaching a maximum height before descending. On its journey 

downwards, a parachute opens, and the cow’s speed is reduced from this point to 

the ground. The task asks about the rate of change of height with respect to the 

distance covered (option a correct response).  

 

Figure 1: The two tasks, © 2018 Copyright: Calculus Video Project.  

Frozen yoghurt (Figure 1, right) task depicts an animation of yogurt being poured 

while displaying its cost on a scale. The task asked about the rate of change of the 

cost of yoghurt with respect to its height that is increasing.  

RESULTS 

The cannon cow task: All students incorrectly assumed that the task asked about 

the speed of the cow where they invoked time as an independent variable. P2 and 

P6 had selected the correct graph (option a) first, but later changed to other 

options. When they were prompted in the stimulated recall, P2 demonstrated an 

understanding that time was not involved in this situation:  

P2: When I look back at it. I think it should have been [option] a … this is 

just distance traveled. There is no speed involved. So even though the 

parachute slows it down. It just goes up and down … 

P6, however, remained unsure. P6 had difficulty in engaging with the graph with 

distance on horizontal axis and was also confused between total distance covered 

and displacement. 

P6:  because in my mind, if you have distance travelled, he [cow] only moves 

in one direction … but not that you go forward and backwards, then it 

becomes zero. 

P1 and P9 considered apparent and intuitive features of the graphs and they 

discarded the graphs that were “pointy”.  
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P1:  Well, it was really that I imagine it like, for example in Physics 1, where 

we have diagrams of throwing balls and such things… so it was really 

just that I had never seen such a sharp point. 

P9:  this curve [option b] represents that better than steep lines … Because it 

doesn’t just go straight up and down like that but moves more in a kind 

of harmonic motion. 

Other students considered the moment when the parachute opened during the 

cow’s downward motion and examined the position of the humps in the graphs for 

options b, c, and d intuitively while comparing these three choices. When 

prompted, none of them were able to conceptualize how time could be excluded 

from this situation. 

The frozen yoghurt task: Six students answered correctly that the rate of change 

of the cost is increasing. Among these students, some (e.g., P7) reasoned based on 

the animation while others (e.g., P8) did not.  

P7: I did not actually look at the animation so much, I just know that like as 

the height increases the amount of yogurt needed to add height also 

increases.  

P8: ... as you can see at the start of the animation the scale goes very slowly 

and then it sort of takes off. 

Three students (P1, P3, and P4) incorrectly chose the option b increasing and 

decreasing. Their reasoning showed that they only looked at the cone being filled 

up in the animation. P1’s reasoning can be seen below: 

P1: I thought that in the video, they specifically show that at the end they 

pull the handle up, and then I think back to when I use the ice cream 

machine when I pull the handle up, it comes out smoothly 

P1: I didn’t pay much attention to it…since they followed each other … Yes, 

it could perhaps have been increasing …  

P1, P3, and P4, were cued by the visual of the cone being filled up speedily at start 

than the end and started thinking of the rate of the change of height of yoghurt with 

respect to time. From the rest, P6 chose decreasing but was uncertain if it could be 

increasing. P11 answered decreasing and had difficulty in grasping the quantities 

in question.  
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DISCUSSION AND CONCLUSION 

The cannon cow problem that was set up in a kinematics context, but did not ask 

for a rate of change involving time, was difficult to grasp for the students. They 

invoked time and thought of the rate of change of height with respect to time, a 

persistent issue reported previously (cf. Jones, 2017; Rodriguez & McAfee, 2023). 

Half of the students solved the frozen yoghurt problem correct, some leveraging 

the animation for their reasoning. Those who had it incorrect misidentified key 

quantities, influenced by the animation of yogurt pouring, which misactivated 

intuitive knowledge of ice cream machines (and how a cone fills up) and shifted 

focus to the wrong quantity (height and its rate of change). It remains unclear 

whether the cannon cow animation (parachute and speed reduction) prompted 

speed-related reasoning (Elby, 2000) or whether the issue stemmed from limited 

engagement with non-time-related rate of change problems. Eye-tracking data 

provide further insights into students’ attention in these animations.  
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How can we teach multivariable calculus concepts to biology and life sciences 

students in a contextualized way? And what concepts are actually used in modern 

biology research? In this paper I present the development of a new Calculus for Life 

Sciences course and focus specifically on the part that introduces multivariable 

calculus concepts. The course focuses on modeling and studying the long-term 

behavior of dynamical systems arising in the life sciences. I show how the concept of 

linearization is central in biology as it is necessary to determine the long-term 

behavior of non-linear models that are so prevalent in the life sciences. 

Keywords: calculus for life sciences, novel approach to teaching calculus, modeling, 

dynamical systems, multivariable calculus. 

For more than two decades there have been high profile calls from professional 

associations to change the teaching of calculus for biology and life science students  

(e.g., National Research Council (NRC), 2003; Association of American Medical 

Colleges and Howard Hughes Medical Institute (AAMC), 2009). These reports 

recommend the development of mathematics courses that focus on modeling with an 

“emphasis […] not on the [mathematical] methods per se, but rather on how the 

methods elucidate the biology” (NRC 2003, p. 170). The goal of such courses 

“should be to see biology in a whole new light as a result of the 

mathematical/computational approach to the subject” (NRC 2003, p. 170). The 

AAMC moreover explains that it expects medical school applicants to be able to 

“quantify and interpret changes in dynamical systems” (AAMC, 2009, p. 24). Over 

the last three decades courses and course activities have been developed to bridge the 

gap between mathematics and biology  (e.g., Ledder, 2008; Robeva et al., 2022). 

While a variety of approaches have been described in the literature, I have found no 

article precisely describing how a multivariable calculus course could be completely 

transformed to truly interweave mathematics and the life sciences.  

In 2013 the University of California Los Angeles (UCLA) started developing a new 

two-quarter “Calculus for Life Sciences” course (Garfinkel et al., 2017). The goal of 

this new course is to bridge the gap between the mathematics and life sciences and to 

introduce students to mathematical concepts actually used in modern biology 

research. By focusing on modeling and the dynamical systems arising in biology and 

the life sciences, the course follows the recommendations advocated in the 

aforementioned reports. In the first quarter of the course, which is described in detail 

in Bennoun and colleagues (2023), students start by learning how to write differential 

equation models that describe the evolution of biological systems. They then learn the 

concepts of derivative and integral. Finally, using graphical methods such as 
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simulating time series, state space trajectories, and vector fields, students learn how 

to study the long-term behavior of (mainly) one-dimensional models. They are also 

introduced to the biologically important concepts of qualitative change, which 

mathematically corresponds to the notion of bifurcation, as well as oscillatory 

behavior in biological systems. In the second part of the course, the focus of the 

present paper, students acquire more advanced tools from calculus to determine 

analytically, and not only graphically, the long-term behavior of models. Since the 

second half of the course focuses on two-dimensional models, students learn concepts 

from multivariable calculus. The present article consitute an answer the question of 

how one can transform a multivariable calculus course in order close the gap between 

calculus and the life sciences. In the following sections I start by describing why 

students first learn about discrete-time models. I then explain why the study of the 

long-term behavior of two-dimensional models requires the notion of linear 

approximation in higher dimensions. Next, I show how studying long-term behavior 

naturally leads to the notion of qualitative change, or mathematically, of bifurcation. 

Finally, I briefly describe the impact of the course on student motivation and 

subsequent performance.  

COURSE CONTENT 

As mentioned above a fundamental question for biologists is to determine the long-

term behavior of biological systems. In the course we investigate questions such as: 

will two species competing for resources in a given area coexist or not? And if so, 

how many individuals of each species will survive in the long run? In the context of 

the biochemical process called glycolysis, which is one of the important ways cells 

have to obtain energy by breaking down sugar, how will the concentrations of 

chemicals involved in this process evolve over time? Will they eventually tend to 

specific levels or will they continue to oscillate indefinitely? In order to answer these 

questions, one needs to find the equilibrium points of the model and determine their 

stability. In a two-variable differential equation model, the equilibrium points are the 

points for which both equations are equal to zero. The stability of an equilibrium 

point determines whether the system is (locally) attracted to the point (a “stable” 

equilibrium point), repelled by it (an “unstable” equilibrium point), or not attracted 

nor repelled by it (a “neutral” equilibrium point). As such, it is the equilibrium points 

and their stability that “control” the long-term behavior of a model. It is thus crucial 

for students to develop the ability to find these points and determine their stability. 

Setting Up the Stage with Discrete-Time Models 

In the second quarter of the course, students first learn about discrete-time models. 

These models are well-suited to study animal populations that have well-defined 

breeding seasons as well as other phenomena for which data comes in discrete times 

such as heartbeats. In particular, we study models defined by Leslie matrices. In such 

models, the new populations XN+1 are found by applying the matrix A defining the 

model to the vector of current populations XN, in other words we have XN+1 = AXN. 

In order to study these models we introduce the different concepts necessary to define 
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the notions of eigenvector and eigenvalue. Specifically, students learn about vector 

spaces, bases, linear transformations and matrices. While these notions are obviously 

not calculus concepts, the reason I mention them here is that eigenvalues are crucial 

to study continuous-time models in two or higher dimensions. In other words, when 

analyzing continuous-time models calculus and linear algebra notions become 

intimately linked and one cannot use purely analytic concepts to study such models. 

This part on discrete-time models can therefore be thought of as a mean to introduce 

the concepts of eigenvalue and eigenvector in a contextualized way. 

Stability of Equilibrium Points and The Importance of Linearization 

After the section on discrete-time models, we turn to continuous-time models, which 

is really the central part of the course. How one can determine the stability of an 

equilibrium point depends on whether the model is linear or not. If the model is 

linear, which means that the equations can be written as linear combinations of the 

variables, then it can be written in matrix form. In this case the stability of the 

equilibrium points is determined by computing the eigenvalues of the matrix that 

defines the model. However, the vast majority of the models arising in the life 

sciences are non-linear and therefore this “simple” method cannot be used. The 

question is thus how to analyze the non-linear models that are so prevalent in biology.  

At that point in the course we return to the idea of using the linear approximation of a 

function to determine the stability of the equilibrium points of a model. This idea was 

first introduced for the one-variable case in the first quarter of the course and we now 

extend it to two-variable vector fields. To do so, students first learn about functions in 

two variables and how their graphs are surfaces in the three-dimensional space. Then, 

we introduce partial derivatives and study how they correspond to the slopes of 

specific lines tangent to the surface defined by the function. We can next move to 

finding the linear approximation of a vector field. The two equations of a model 

define a vector field         that we write as V(x, y) = (f(x,y), g(x, y)), where f 

and g are two-variable functions. The linear approximations of f and g are thus the 

tangent planes in the three-dimensional space. We can combine the two linear 

approximations to find the equations of the linearized vector field, in other words, the 

first component of the linearized vector field is the linear approximation of f while 

the second component is the linear approximation of g. Importantly, students learn 

that the linear approximation of a vector field can be written in matrix form and that 

this matrix is called the Jacobian matrix. The derivative of a two-dimensional vector 

field is thus conceived as the linear approximation of the vector field. Finally, 

students learn about the Hartman-Grobman theorem which states that in almost all 

cases linearizing a vector field preserves the stability of the equilibrium points. This 

result is really crucial as the vast majority of models arising in biology and the life 

sciences are non-linear. We then study and determine the long-term behavior of two-

variable models such as competition models, predator-prey models, and the 

glycolysis model presented above. Importantly, students are always asked to explain 

what their results mean in biological terms. 
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Qualitative Change and Oscillations 

The study of the long-term behavior of models naturally leads to the important notion 

of qualitative change. One easily notices that the long-term behavior of a model can 

be qualitatively different depending on the value of one or several parameters. For 

example, in a competition model a change in the value of a parameter can determine 

whether the two species will coexist in the long run or whether one of the two species 

will go extinct. In the case of the Holling-Tanner model, which describes the 

evolution of predator and prey populations, the change in one parameter will 

determine whether the two species will tend to specific numbers or will keep 

oscillating with time. Mathematically, qualitative changes are bifurcations and they 

correspond to a change in the number or stability of the equilibrium points. Since the 

stability of the equilibrium points is “controlled” by the eigenvalues of the system or 

of its linearization, studying bifurcations essentially comes down to determining how 

the eigenvalues evolve as a given parameter changes. A particularly important type of 

bifurcation we study are called Hopf bifurcations. These bifurcations correspond to 

the appearance or disappearance of stable oscillations. Using this concept, one can 

explain why the concentrations of fructose-6-phosphate and adenosine diphosphate 

that are involved in glycolysis either tend to specific concentrations or tend to stable 

oscillations depending on the value of a parameter. Similarly, we can explain the 

appearance or disappearance of oscillations in the Holling-Tanner model. 

Course Impact on Student Motivation and Performance in Subsequent Courses 

One natural question is whether by this new contextualized version of the course 

increases students’ interest in the life sciences. In a survey conducted with students 

who had taken the old version of the course, 83.7% of the 289 respondents either 

disagreed or strongly disagreed that they were more interested in studying biology 

after having taken the course. By contrast, 78.3% of 332 students who had taken the 

new version of the course either strongly agreed or somewhat agreed that they had 

become more interested in science as a result of the course. As the vast majority of 

these students want to major in biology or the life sciences, these results suggest that 

the new Calculus for Life Sciences helps increase students’ interest in their major 

whereas the old version was decreasing it. 

Another question is whether the new curriculum adequately prepares students for 

subsequent science courses. Sanders O’Leary et al. (2021) studied this question by 

comparing the performance of students who had either taken the old or new version 

of the course. Using multilinear models, they compared grades in courses in 

chemistry, life sciences, and physics that are typically taken after the Calculus for 

Life Sciences series. For all three courses they found that having taken the new 

version of the course positively impacted students’ performance in subsequent 

science courses.  
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CONCLUDING REMARKS 

The course developed at UCLA provides an example of how multivariable calculus 

concepts can be taught to biology students using authentic models and problems from 

biology. The crucial Hartman-Grobman theorem shows the importance of the 

concepts of linear approximation and eigenvalue for biologists. This suggests that 

when teaching the notion of derivative to biology students, it is really the idea of 

linear approximation that needs be underlined. It also shows how notions from 

calculus and linear algebra are intimately linked when working with two-dimensional 

models. 
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This study examines 17 university physics textbooks with the aim of analysing how 
infinitesimals and differentials are treated and investigating if and how the approach 
to these concepts has changed over the years. What seems to emerge is that, as physics 
textbooks embrace the change introduced by Cauchy and Weierstrass in mathematical 
analysis by pursuing rigor, they increasingly marginalize mathematical definitions of 
calculus concepts and attribute to mathematics a technical rather than a structural 
role. 
Keywords: infinitesimals, differentials, physics education, university texbooks. 
INTRODUCTION 
The concepts of infinitesimal and differential are fundamental in physics problem-
solving that requires calculus. In particular, when using calculus in a physical context, 
the basic concept that appears in the process of mathematization is that of the 
differential, either in reference to independent variables or as part of differential 
expressions. As López-Gay and colleagues write, "If we want students to learn how to 
mathematize real-world problems when [Differential Calculus] is required, a 
conceptual understanding of this kind of expression and the situations in which these 
expressions are necessary is essential." (López-Gay et al., 2015).  
Research in mathematics and physics education has identified significant challenges 
students face with the concepts of infinitesimal and differential. Studies suggest that 
students often develop multiple, context-dependent conceptions of differentials: as an 
algebraic object in mathematics, or as a pure abstraction or “small amount of 
something” in physics (Artigue et al., 1990). Despite their procedural use of differential 
and integral methods, students frequently lack a clear understanding of the conceptual 
foundations or the conditions that justify these operations, relying instead on superficial 
cues, such as the term “elementary”. 
Building on this, López-Gay and colleagues (2015) investigated the conceptions of the 
differential that students employ in physics, analysing whether these understandings 
enable the construction of mathematical models or merely support procedural 
manipulation of pre-given expressions. Their work underscores the polysemic nature 
of the differential. In mathematics, the differential is primarily concerned with 
providing a rigorous foundation and formalization of calculus, independent of any 
physical context. In contrast, in physics, the differential emphasizes the practical 
application of concepts and reasoning, often prioritizing utility over formal rigor 
(Artigue et al., 1990, Dunn and Barbanel, 2000) 
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Our study follows the work of López-Gay and colleagues and aims to analyse how 
infinitesimals and differentials are treated in university physics textbooks and to 
investigate if and how the approach to the concept of infinitesimal and differential has 
changed in physics textbooks over the years. The motivation to investigate the change 
is due to the impression that physics students, over time, have been encountering more 
difficulties in activating intuition in dealing with differential equations. 
 
THE STUDY: AIMS, CONTEXT AND METHODS 
For the study, a selection of university physics textbooks has been carried out. The 
textbooks have been chosen with two criteria: they have to represent the textbooks' 
evolution over the XX Century; they have to be “classical”, authoritative and, then, 
widely adopted in their historical period in Italy. For the analysis, the chapter on 
kinematics was chosen as representative of how the approach to the concepts of 
infinitesimals and differential is used in the book, being typically the first chapter 
where the students encounter calculus concepts in physics.  
In particular, we examined 5 textbooks from the 1940s-1950s (Bernardini, 1942; 
Castelfranchi, 1945;  Perucca, 1941; Rostagni, 1951; Valle, 1947), 4 textbooks from 
the 1980s-1990s (Bertin et al., 1996; Gettys et al., 1993; Roller & Blum, 1984; Smith 
& Smith, 1993) and 8 textbooks from the 2000s-2020s (Duò & Taroni, 2021; Focardi 
et al., 2014; Kleppner & Kolenkow, 2014; Mazzoldi et al., 2021; Mencuccini & 
Silvestrini, 2016; Resnick et al., 2003; Serway & Jewett, 2023; Sette et al., 2021). 
The analysis has been carried out by applying an analytical lens, built on the results of 
the textbook investigation of López-Gay and colleagues (2015), who pointed out four 
different possible ways to deal with the differentials in physics textbooks: as a 
meaningless formal element (part of the derivative or integral symbol), as an 
infinitesimal increment (df = Df is the infinitesimal variation produced by the 
infinitesimal variation Dx), as an infinitesimal approximation ((Df − df ) / Dx is an 
infinitesimal and all the terms Df , df, Dx and Df − df are also assumed to be infinitesimal 
numbers) and as a linear estimate of the increment (limDx→0[(Df − df) / Dx] = 0, but Df, 
df, Dx and Df − df could have big or small values). 

In particular, for each textbook, we first checked whether they contained the e-d 
definition of limit and the term “infinitesimal” with any meaning (infinitesimal number 
or variable approaching zero). The exposition of the e-d definition of the limit is 
important as it denotes an assimilation of and an adherence to the Cauchy and 
Weierstrass approach to calculus. The use of the term “infinitesimal” denotes the need 
to keep a connection with the original setting of Newton and Leibniz. 
Then, we classified the concept of differential in the book, following the four categories 
introduced by López-Gay and colleagues (2015). 
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Finally, we applied the model of Uhden and colleagues (Uhden et al., 2011) to evaluate 
whether, in the chapter, the role of mathematics in the text emerged as structural or 
instrumental. 
 

FINDINGS 
In Table 1, we report a summary of the findings.  

Year Author e-d definition 
of limit 

Use of term 
“infinitesimal” 

Differential 
conception 

Role of 
mathematics 

1941 Perucca, E. (1941). Fisica Generale e sperimentale, vol 
I, IV ed, Unione tipografico-editrice torinese, Torino. No No Meaningless Structural 

1942 Bernardini, G. (1942). Fisica Sperimentale, parte I, III Ed. 
Stabilimento Editoriale Tipo-Litografico V. Ferri, Roma. No Yes Infinitesimal 

approximation  Structural 

1945 
Castelfranchi, G. (1945). Fisica Sperimentale e Applicata, 
secondo i più recenti indirizzi, vol. I, IV ed. Editore 
Ulrico Hoepli, Milano. 

No Yes Infinitesimal 
increment Technical 

1947 Valle, G. (1947). Guida alle lezioni di Fisica 
Sperimentale, parte I, II ed, Casanova editore, Parma. No Yes Infinitesimal 

increment  Structural 

1951 
Rostagni, Antonio (1951). Meccanica Termodinamica, 
vol. I, Fisica Sperimentale, Libreria universitaria di G. 
Randi, Padova. 

No Yes Infinitesimal 
increment Structural 

1984 Roller, D. E. & Blum, R. (1984). Fisica vol. I, Meccanica, 
Onde, Termodinamica. Zanichelli, Bologna.  No Yes Infinitesimal 

increment Technical 

1993 
Gettys, W. E., Keller, F. J., & Skove, M. J. (1993). Fisica 
classica e moderna, vol. 1, Meccanica e Termodinamica. 
McGraw-Hill Italia.  

No No Meaningless Technical 

1993 Smith, P., & Smith, R. C. (1993). Mechanics, II edition. 
John Wiley & sons. No No Meaningless Technical 

1996 
Bertin, A., Poli, M., & Vitale, A. (1996). Fondamenti di 
Meccanica. Società editrice Esculapio, Progetto 
Leonardo, Bologna,  

Yes Yes Infinitesimal 
approximation Technical 

2002 Resnick, R., Halliday, D., & Krane, K. S. (2002). Physics 
vol. 1, V edition. John Wiley & sons.  No No Meaningless Structural 

2014 Kleppner, D., & Kolenkow, R. (2014). An Introduction to 
Mechanics, second edition. Cambridge University Press. No Yes (rotation) Linear estimate Structural 

2014 
Focardi, S., Massa, I., Uguzzoni, A., & Villa, M. (2014). 
Fisica Generale, Vol 1, II ed. Casa Editrice Ambrosiana, 
Milano.  

No Yes Linear estimate Technical 

2016 
Mencuccini, C., & Silvestrini, V. (2016). Fisica, 
Meccanica e Termodinamica, con esempi ed esecizi. 
Casa Editrice Ambrosiana, Milano.  

Yes Yes Linear estimate Structural 

2021 Duò, L. & Taroni, P. (2021). Fisica, Meccanica e 
Termodinamica. Edises Edizioni, Napoli No Yes Infinitesimal 

increment Structural 

2021 
Mazzoldi, P., Nigro, M., & Voci, C. (2021). Elementi di 
Fisica, Meccanica e Termodinamica, III ed. Edises, 
Napoli.  

No Yes Meaningless Technical 

2021 Sette, D., Alippi, A., & Bettucci, A. (2021). Lezioni di 
Fisica 1, vol. 1, II ed. Zanichelli, Bologna.  No No Meaningless Technical 

2023 Serway, R. A., & Jewett, J. W. Jr (2023). Fisica per 
Scienze e Ingegneria, vol. I, VI ed., Edises, Napoli  No No Meaningless Technical 

Table 1: Results of the textbooks analysis 
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The table shows that, in physics textbooks, the e-d definition of limit is rarely 
introduced and that the term infinitesimal appears to be fundamental over time. In spite 
of this, the conception of differential tends to become meaningless and this often occurs 
in the textbooks where mathematics does not have a structural role. In the following 
section, we provide a possible interpretation of what emerged, to spark the discussion 
about the specificity of the physical approach to calculus. 
DISCUSSION 
In physical culture, the focal role of measurements leads to preventing any tendency to 
believe that the information from reality can be “faithfully” represented by 
infinitesimal/hyperreal numerical values, or by real numerical values. The more 
widespread ontological and epistemological view is shaped around the “matter of fact” 
that every physical measurement is limited by the sensitivity of the measuring 
instrument and therefore has an intrinsic error. Thus, any physical measure, with any 
degree of accuracy, can be described by a rational number. As noted by Courant and 
Fritz (1999), thinking of a measurement result as a real number is not more than a 
mathematical idealization. “The practical significance of such idealizations lies in the 
fact that, through the idealizations, analytical expressions become essentially simpler 
and more manageable”. For example, it is simpler and more convenient to work with 
the notion of instantaneous velocity than with the notion of average velocity. In 
physics, we feel we have the right to replace a derivative by a difference quotient and 
vice versa, provided only that the differences are small enough to guarantee a 
sufficiently close approximation. “As long as he keeps knowingly within the limits of 
accuracy required by the problem, he might even be permitted to speak of the quantities 
dx = h and dy = h f¢ (x) as infinitesimals”. These “physically infinitesimal” quantities 
have a precise meaning. They are variables with values which are finite, unequal to 
zero, and chosen small enough for the given investigation, i.e. smaller than the degree 
of accuracy required. 
Since these “physical infinitesimals” are not truly infinitesimals in the mathematical 
sense, the problems that plagued infinitesimals in the early developments of 
mathematical analysis are not encountered for them. Most likely — for the sake of 
simplicity and manageability — physics teaching is best accomplished using the old 
and intuitive infinitesimal concepts of Leibniz and Newton.  
For these reasons, probably, physics textbooks seem to have been late in receiving the 
transition from Leibniz and Newton's infinitesimal analysis to the later developments 
of Cauchy and Weierstrass. As it emerged from our analysis, 20th century textbooks 
still show clear traces of infinitesimals in Leibniz’s vision. The 20th century physics 
books that we analysed frequently use the term infinitesimal and only two of them 
present the e-d definition of limit. 
As physics textbooks embrace the change in mathematical analysis, they increasingly 
marginalize the mathematical definitions of calculus concepts. 
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Clearly, it is unthinkable in a physics textbook to define the instantaneous velocity of 
a material body using the e-d definition of limit, as in the paradoxical dialogue reported 
in (Grabiner, 1983): 

Student: The car has a speed of 50 miles an hour. What does that mean? 
Teacher: Given any e > 0, there exists a d such that if |t2 - t1| < d, then 
  |(s2 - s1)/(t2 - t1) − 50| < e. 
Student: How in the world did anybody ever think of such an answer? 

The e-d definition of velocity is too complicated for students to understand. 
Physics textbooks rather prefer to consider the concept of limit as a primitive/intuitive 
concept, without defining its meaning, sometimes referring to calculus textbooks for 
their understanding. The role of mathematics thus becomes increasingly instrumental 
and less structural in physics textbooks. 
In conclusion, what we observed is that the value of rigor in mathematics led to cutting 
some conceptual nuances that are, instead, fundamental for physics reasoning. The 
effects and implications are that mathematics, in physics, is used instrumentally and 
not for guiding and structuring reasoning. 
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Thermodynamics provides a powerful context in which to explore expert and student 

understanding of partial derivatives, differentials, and chain rules.  We summarize here 

our efforts to identify expert reasoning in this arena and convey it to students as part 

of the Paradigms in Physics project at Oregon State University, now in its third decade.  

In particular, we describe expert use of differentials to manipulate partial derivatives 

and analyze student difficulties in moving between different representations of partial 

derivatives. 

Keywords: Teaching and learning of specific topics in calculus, teachers’ and students’ 

practices related to calculus across disciplines, differentials, partial derivatives, 

thermodynamics. 

INTRODUCTION 

A typical question in thermodynamics is to determine the adiabatic bulk modulus, 

defined by β𝑆 = −V  (
∂𝑝

∂𝑉
)
𝑆
, which measures resistance to compression [1].  For

example, the entropy 𝑆 might be given by 

𝑆 = 𝑁𝑘 (ln [
𝑉

𝑁
(
𝑚𝑘𝑇

2𝜋ℏ2
)
3/2

] +
5

2
) 

in terms of the volume V and the temperature 𝑇, and for an ideal gas we would have 

the equation of state 𝑝𝑉 = 𝑁𝑘𝑇,  relating the pressure 𝑝, volume 𝑉, and temperature 

𝑇; where ℏ, 𝑁, 𝑚, and k are constants.  It is not immediately obvious how to determine 

the desired partial derivative from the given information, nor which variables are 

independent—or even how many there are. 

We summarize here some of our efforts to investigate understanding of partial 

derivatives, including a cognitive task analysis of expert approaches to problems such 

as the one above and thematic analyses of student difficulties in applying their 

mathematical knowledge to such problems.  This work is part of the Paradigms in 

Physics project at Oregon State University, which for nearly 30 years has reimagined 

the undergraduate physics major, not only incorporating and adapting modern 

pedagogical strategies, but also significantly rearranging the content, based on the 

education research of ourselves and others.   

SOLVING THE PROBLEM WITH DIFFERENTIALS 

We begin with a task analysis of the underlying mathematics.  The geometric approach 

to calculus used in the Paradigms project emphasizes infinitesimal reasoning using 
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differentials to represent quantities that are “small enough” to model linear differential 

relationships to the desired accuracy (Dray & Manogue, 2003, 2010; Dray, 2016, Dray 

et al., 2019).  We teach our students to “zap with d”, converting an equation such as 

𝑥𝑦 = 1 to 𝑥 𝑑𝑦 + 𝑦 𝑑𝑥 = 0.   This process automatically keeps track of which 

derivatives have been taken; it is not necessary to decide beforehand which variables 

are independent. 

In the example above, zapping the equation for S with d and a little algebra yields 

𝑑𝑆 =
3𝑁𝑘

2𝑇
𝑑𝑇 +

𝑁𝑘

𝑉
𝑑𝑉 

and setting this expression equal to zero (since S is constant) yields a linear relation 

between dT and dV, which can of course be solved for either differential.  Zapping the 

ideal gas law with d and eliminating dT leads directly to 𝛽𝑆 =
5𝑁𝑘𝑇

3𝑉
. 

USING CHAIN RULE DIAGRAMS TO KEEP TRACK 

Figure 1: A chain rule diagram for the calculation of adiabatic bulk modulus.  Arrows 

indicate that the upper differential depends (linearly!) on the lower differential. 

One great advantage of the differentials approach is that it is always possible to solve 

linear equations involving differentials, unlike the equations for the original variables.  

One disadvantage of this strategy is that it is easy to lose track of where in the 

calculation one is.  We encourage students to use chain rule diagrams such as Figure 

1 as a reminder of which partial derivatives are needed.  Similar diagrams are often 

used in mathematics textbooks to represent the multivariable chain rule, although we 

prefer to write such diagrams directly in terms of differentials.  The diagram in Figure 

1 is equivalent to the chain rule expression 

(
𝜕𝑝

𝜕𝑉
)
𝑆
= (

𝜕𝑝

𝜕𝑉
)
𝑇
+ (

𝜕𝑝

𝜕𝑇
)
𝑉
(
𝜕𝑇

𝜕𝑉
)
𝑆
 . 
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WHAT OUR RESEARCH SHOWED 

Expert Reasoning 

Kustusch et al. (2012, 2014) interviewed ten experts in several disciplines while giving 

them a problem much like the example above.  No two experts approached the problem 

the same way.  Three basic strategies, or “epistemic games”, were identified using 

cognitive task analysis: using substitution to isolate the independent variable prior to 

differentiation, using various forms of the multivariable chain rule to relate partial 

derivatives, and using differentials to reduce the problem to linear algebra. Substitution 

was seen to be problematic if the given equations are difficult to solve, and partial 

derivatives and differentials were described by one expert as encoding the same 

information quite differently.  Interestingly, some of the experts mentioned their 

concern that some of the (correct) moves that they made would not be considered 

“legal” by mathematicians, especially in the context of working with differentials. This 

research prompted the development of the “Partial Derivatives Machine” (PDM), a 

simple mechanical device with springs and pulleys that provides an exact mathematical 

analogue to classical thermodynamic systems such as gas in pistons. We have 

developed curriculum around the PDM and done some initial studies on its 

effectiveness in the classroom (Roundy et al., 2015; Paradigms Team, 2015–2024). 

Student Reasoning 

Founds et al. (2017) used an emergent coding scheme to identify and categorize the 

solution methods of physics students in the Paradigms program on analogous chain 

rule problems from both a pure algebra question on a quiz (N=29) and then a 

thermodynamics inspired question that was part of the final exam (N=27).  The study 

examined both what solution strategies students chose to employ and what types of 

conceptual errors they made.  This analysis used a more finely grained classification 

of the solution strategies, namely variable substitution, differential substitution, 

implicit differentiation, differential division, chain rule diagrams, as well as several 

strategies that did not lead to an answer.  Each of these strategies except the first had 

been explicitly discussed in class, with emphasis on differential substitution and chain 

rule diagrams and the quiz was reviewed in class before the final exam. 

Many students (31%) attempted to use the familiar technique of variable substitution 

on the (much easier) quiz problem, where it was indeed a viable solution strategy, but 

fewer (only 11%) on the exam.  It is not clear whether students recognized that the 

exam computation would be extremely lengthy, or whether they had mastered another 

technique.  No students made conceptual errors with this technique. Differential 

substitution was used by more students on the exam (44%) than on the quiz (21%) and 

by the time of the exam no students made conceptual errors with this method. Chain 

rule diagrams were also relatively common, (21%) on the quiz and (22%) on the final.  

While several students made conceptual errors in their chain rule diagrams on the quiz 

(building incorrect diagrams and/or misreading them), none made such errors on the 

exam.  Other methods were less common. 
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In a follow-up study of 12 students, Founds & Manogue (2022) found, using thematic 

analysis, that the difficulties many junior-level physics students experience may be 

related to their unfamiliarity with Leibniz notation.  In addition, this study showed that 

these students do not know to eliminate extra dependent variables in systems of 

equations. 

Multiple Representations 

In a separate study, Bajracharya et al. (2019) asked eight student interviewees a more 

difficult prompt: to determine a particular partial derivative from data with some 

presented graphically and other data presented numerically in a table.  To solve this 

problem successfully, interviewees not only needed to derive a chain rule analogous to 

the one above, but also to identify which partial derivative could be found from the 

data as presented.  This study introduced representational transformation diagrams as 

a method to describe student problem-solving strategies. These strategies included both 

graphical analysis and analytic derivations using tools such as differentials and tree 

diagrams.  The analysis focused on students’ ability to transform one representation 

into another, identifying several classes of transformations such as translation, 

consolidation, and dissociation. Consolidation, a process in which a student transforms 

two or more representations into a single representation, and dissociation, a process in 

which one representation is expanded into two or more representations, were found to 

be the most common places for interviewees to encounter difficulties. 

SUMMARY 

These results document the difficulties some students have based on their mathematical 

training when trying to master the expert reasoning around (partial) derivatives used in 

physics.  They also document the existence of several expert approaches to the same 

task, both across disciplines and within a single discipline. Helping students become 

experts will require interdisciplinary coordination. 

NOTES 

1. This common generalization of Leibniz notation for partial derivatives in thermodynamics will be unfamiliar to many 
mathematicians and most students, with the subscript indicating the derivative with the entropy S held fixed. 
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A HISTORY-BASED ARTIFACT 

This paper proposes incorporating history and historical artifacts into hands-on 

activities on infinitesimal calculus, aligning with Italian research on workshop 

activities involving “mathematical machines” (Bartolini Bussi & Maschietto, 2006). 

We have utilized a new device rooted in historical concepts related to the mechanical 

implementation of solutions for inverse tangent problems (Bos, 1988). Beyond their 

historical importance in the development of calculus, these ideas maintain a strong 

connection with material implementations, implying the creation of scientific 

instruments for demonstration, education, and practical application (Tournès, 2009). 

Our artifact (Fig. 1), realized with FabLab tools (https://www.machines4math.com/), 

can be assembled in various configurations (Crippa & Milici, 2023): to introduce the 

concept of the tangent and inverse tangent problems 

(https://www.youtube.com/watch?v=LMLt90R8zHA), to trace exponential and 

parabola (https://www.youtube.com/watch?v=kqtU9GpcN78), and to construct 

derivatives and antiderivatives (https://www.youtube.com/watch?v=TyxCAR317HE). 

Figure 1. Components of the artifact. 

THEORETICAL BACKGROUND 

This study examines our new artifact from a semiotic perspective, emphasizing the 

crucial role of signs and representations in mathematics. The main theoretical 

component is the Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008); it 

applies a Vygotskian perspective to mathematics education, suggesting that teachers 

use specific artifacts to mediate mathematical meanings. A relevant theoretical tool is 
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the analysis of the semiotic potential of an artifact, which is crucial for designing 

student tasks and guiding teacher actions. 

FIRST RESULTS AND FURTHER PERSPECTIVES 

Our in-progress research project aims to evaluate our artifact for teaching calculus, 

focusing on its use, constraints, and manipulation to create effective tasks. We analyzed 

how a secondary school teacher explores this artifact from a semiotic perspective 

(Maschietto & Milici, 2024) and we identified different configurations and crucial 

elements for task design by analyzing its semiotic potential. In its most straightforward 

configuration, our artifact offers a material representation of the tangent line; in other 

configurations, the tangent is mechanically guided to generate curves.   

We will start to test tasks to bring out the meanings embedded in the artifact. On the 

one hand, we plan to explore the artifact to consolidate mathematical meanings with 

university students. On the other hand, we are designing a teaching experiment to 

mediate calculus meanings; it will be carried out with high secondary school students. 

Additionally, the historical and epistemological aspects are essential for maintaining 

student interest: the artifact allows the integration of historical experiences and original 

manuscripts to enhance learning. 
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a widely-adopted secondary textbook  

Francesco Beccuti1 
1Università di Cagliari, Italy, francesco.beccuti@unica.it 

Calculus enjoys a unique position in mathematics education, serving as a foundational 
tool across numerous scientific and technical disciplines. Yet, despite its inherent 
interdisciplinary nature and pervasive applications across diverse fields, calculus 
appears to remain typically taught as a self-contained mathematical subject with 
limited explicit integration into other fields (Biza et al., 2022).  
The problem of the widely accepted applicability and interdisciplinarity of calculus and 
its concomitant high intra-disciplinary mode of institutional teaching is therefore very 
deep and crucially involves also how the discipline is explicitly and implicitly 
legitimized in terms of its articulated applications. As to implicit  institutional 
legitimation, starting from the pioneering socio-critical work of Dowling (2000), 
various authors have argued how mathematical activity in general and problem solving 
in particular implicitly serves to propagate messages concerning the applicability and 
the connected legitimation of mathematical knowledge. Indeed, engagement with 
mathematical exercises and, in particular, with realistic problem solving, according to 
Lundin (2012), serves to deliver various messages concerning the relationship between 
mathematics and its domain(s) of application. Therefore, the very engagement with 
mathematical practice and particularly with problem solving constitutes one of the 
ways in which engagers are institutionally taught about the utility and relevance of 
mathematical concepts in various extra-mathematical domains.  
Aiming to tackle an aspect of this problem with particular reference to calculus as 
introduced in secondary education, I will furnish in this presentation a preliminary 
analysis of the realistic problems/exercises concerning derivatives taken from a widely 
adopted secondary school textbook in Italy. In other words, I will present a preliminary 
exploration of the following question: What is the typical image of the extra-
mathematical applicability of the mathematical concept of derivative presented in this 
textbook? 
The textbook chosen for this ongoing study (i.e., Bergamini et al., 2017) was published 
by one of the oldest and largest Italian educational publishing houses. The book is 
considered to be one of the most adopted book for secondary school mathematics, 
according to relatively recent reports (Montanari, 2019). This book is usually adopted 
in the final year of high school when students are first introduced to calculus. Given 
the structure of the Italian educational system this can be thought to be, for many Italian 
students, the first exposure to calculus before they enroll in mathematical analysis 
courses at university. The book is organized in chapters which revolve around one 
fundamental mathematical concept and contains a copious amount of exercises or 
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problems. Some of these are manifestly labelled in the book with the marker “Realtà e 
modelli” (i.e., “Reality and models”, my translation), thus constituting an explicit way 
to signal to the reader that these problems or exercises, in particular, show the 
applicability of the learnt concepts to reality and to models of an extra-mathematical 
nature. For this reason, these problems can be argued to constitute a privileged way to 
access the book authors’ intended idea of application of the concepts of mathematics 
outside of it.  
Thus, in this presentation, after exhibiting general data on the overall amount and 
relative proportions of the exercises/problems in the selected chapter, I will offer a 
preliminary analysis of the aforementioned group of marked problems and illustrate 
the degree of realism that these manifest by presenting two selected problem which can 
considered to be typical in this respect. Overall, I will argue that, generally speaking, 
these epitomize a phenomenon that, following Dowling (2000), can be considered that 
of a simple “disguise” of traditional mathematical exercises, i.e., the rewording of a 
traditional mathematical problem with superficial extra-mathematical features in order 
to make it appear more “realistic”.  
Moreover, I will attempt to nuance how engagement with these and similar problems 
in secondary school is connected to the interiorization of a message about the 
applicability of calculus to reality. I will finally discuss the potentially far-reaching 
institutional consequences which can be argued to generally affect the epistemologies 
acquired by students concerning the extra-mathematical applicability of calculus and 
of mathematical analysis also in tertiary education (cf. Satanassi et al., 2022). 
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INTRODUCTION  
Quantum mechanics is deeply intertwined with mathematics. In our research, we 
investigate how linear algebra concepts are leveraged, symbolized, and understood in 
quantum mechanics. For example, spin and energy are both quantized phenomena that 
can be mathematized via discrete, finite-dimensional linear algebra. The physical 
observable of position, however, is mathematized via continuous, infinite-dimensional 
functional analysis. Associated computations differ among the finite and infinite, such 
as the inner product as a finite sum versus as a definite integral. How might a shift from 
discrete to continuous be explained mathematically and conceptually in a course text? 
In this poster, we study the research question: How does a quantum mechanics textbook 
employ analogizing activity to support its transition from the discrete contexts of spin 
and energy to the continuous context of position? This research lives at the intersection 
of not just mathematics and quantum mechanics, but also of linear algebra and calculus. 
THEORETICAL FRAMEWORK 
As Ryder et al. (2023) state, “Analogies are known to be powerful tools for making 
sense of unfamiliar ideas in terms of already understood concepts” (p. 284) because 
they help us use knowledge from one domain to develop new knowledge in another 
(Serbin & Wawro, 2024). Even textbook writers (e.g., McIntyre, 2012) at times employ 
analogy to model quantum systems and make them more familiar and understandable 
(Ryder et al., 2023). Gentner (1983) described analogy as a mapping from a source 
domain to a target domain that preserves relations between objects and their attributes 
in the source and target. Glynn (1989) analyzed elementary through university science 
textbooks and found six analogical operations, such as cue source retrieval, map 
similarities between source and target, and indicate where the analogy breaks down. 
Serbin and Wawro (2024) investigated pedagogical moves for analogical activity that 
could support students in developing an understanding of quantum eigenequations 
𝑆"!|+⟩ = ℏ

"
|+⟩, 𝐻(|𝐸"⟩ = 𝐸"|𝐸"⟩, and 𝑥+|𝑥#⟩ = 𝑥#|𝑥#⟩ as instantiations of a central

concept across the contexts of spin, energy, and position, respectively. We identified 
eight additional analogical activities, such as juxtaposing symbols representing objects 
in the source and target, and highlighting sameness of aspects in the source and target. 
METHODS 
In this poster, we will analyse a quantum mechanics textbook by McIntyre (2012), 
focusing on the introduction of the wave function (section 5.3, pp. 112–119). We chose 
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this because it serves as the transition from discrete to continuous for the quantum state 
vector, associated representations, and computations such as probability amplitudes. In 
our analysis of analogical activity, we will first look for parallel sentence structure and 
words commonly used to indicate analogy, such as is/are, like/same/similar, or 
different/difference (Ryder et al., 2023). We will also identify the source and target 
domains (Gentner, 1983), as well as broader analogical activity categories consistent 
with the literature (e.g., Glynn, 1989; Ryder et al., 2023; Serbin & Wawro, 2024).   
BRIEF ANALYSIS EXAMPLE 
The textbook section begins: “To better understand the new concept of a wave function 
𝜓(𝑥), let’s see how it relates to the quantum state vector |𝜓⟩ we used in spins” (p. 112). 
The source and target domains are spin and position, respectively, the mapped objects 
are |𝜓⟩ and 𝜓(𝑥), and the analogical activity includes Introducing Target Concept, and 
Juxtaposing Symbols Representing Source and Target Objects. Later the text states “all 
values of position 𝑥 are allowed. This is in stark contrast to the case of the spin 
component 𝑆! … the spectrum of eigenvalues of position is continuous, and the 
spectrum of eigenvalues of spin is discrete” (p. 13, emphasis in original). The mapped 
object is the eigenvalue spectrum with the attribute of discrete versus continuous, with 
the activity of Indicating where the Analogy Breaks Down. Finally, the text focuses on 
the required sum of all possible probabilities: “In the discrete spins case this meant that 
∑ 𝒫± = ∑ |⟨±|𝜓⟩|" = 1±±  … However, because the spectrum of position eigenvalues is 
continuous rather than discrete, the sum over discrete probabilities must be changed to 
an integral over the continuous probability function…thus the normalization condition 
is ∫ 𝒫(𝑥)𝑑𝑥 = ∫ |𝜓(𝑥)|"𝑑𝑥#

$# = 1#
$# ” (pp. 114–15). Focusing on discrete versus continuous 

attribute, Highlighting Sameness for the total probability sum, and Juxtaposing 
Symbols facilitated introducing the integral as an inner product and norm condition.  
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INTRODUCTION AND THEORETICAL FRAMEWORK 
Physics heavily relies on mathematics, yet proficiency in procedures does not ensure 
conceptual transfer across contexts (Uhden et al., 2012; Redish, 2005). This disconnect 
is especially evident in early physics courses. Mathematics plays a structural role in 
physics reasoning, shaping conceptual understanding (Pospiech, 2019). A key 
challenge is interpreting definite integrals, especially in relation to the Fundamental 
Theorem of Calculus (Bajracharya, 2014). Jones (2013, 2015a) identifies three 
symbolic forms corresponding to different conceptualizations of the integral: area, anti-
derivative, Riemann sum. The Riemann sum approach is essential in physics but often 
underutilized by students (Jones, 2015b). The Test of Calculus and Vectors in 
Mathematics and Physics (TCV-MP; Carli et al., 2020) is a multiple-choice test 
administered at the start of Physics 1 (after Calculus 1) courses in Science and 
Engineering programs at our institution. It includes paired mathematics and physics 
items on integrals derivatives, and vectors. This contribution presents the revision of 
the integrals section to improve balance among sections, enhance item quality, and 
incorporate recent research. The revision involved analyzing previous test results from 
2018 to 2024, 13 instructor interviews, and 11 think-aloud student interviews. Items 
were initially developed in open-ended form, and the outcomes of the interviews were 
then used to construct the distractors for the multiple-choice version. 
ITEM REVISION AND PRELIMINARY FINDINGS 
The revised items cover all three conceptualizations while addressing physics-specific 
challenges like spatial variation, differentials, and non-uniformity. 

Item pair Topic Conceptualization Representation 
Math Phys Mathematics Physics input output 

7M* 7P 𝑓! →	∆𝑓 (area + FTC) velocity → 
displacement Area under the curve graphs words 

8M* 8P* 𝑓 → 	𝐹 (integral funct.) velocity → 
displacement 

Signed area under the 
curve or anti-derivative graphs graphs 

9M* 9P* 𝑓! → 	𝑓 (area + FTC) velocity → 
position 

Signed area under the 
curve graphs numbers 

Sum 
M 

Sum 
P accumulation of area linear density 

→ mass Riemann sum words 
formal words 

Anti 
M 

Anti 
P 𝑓! → 	𝑓 (antiderivative) acceleration → 

velocity Anti-derivative words 
formal numbers 

Table 1: Categorization of the new and modified items for the revised TCV-MP. 
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The Riemann sum form was introduced through a new item on linear density (Fig. 1). 
Interviews revealed a variety of interpretations of ρ(x)dx, with only a few students 
identifying it as an infinitesimal mass element. 

Fig.1: The new item pair on the ‘adding up pieces’ conceptualization of the integral. 

The inclusion of new items and modification of the existing ones were designed to 
cover all three conceptualizations while keeping a manageable test length. The revised 
integral section of the TCV-MP expands from three to five item pairs, offering broader 
coverage of graphical and formal aspects, and addressing specific conceptual 
difficulties (e.g., signed area). Interview analysis supported students’ over-reliance on 
procedural approaches, even when accumulation reasoning would be more appropriate. 
The revised test is currently being validated in its multiple-choice format. 
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4.4. New item pair for the conceptualization of the definite integral as a sum

dx-long piece of bar at position x, or, equivalently, the infinitesimal mass contribution from x
to x + dx along the bar.

2. (summation or accumulation) by summing up the infinitesimal mass contributions over the entire
length of the bar,

s
L

0 fl(x) dx gives the total mass of the bar.

Note that, in this case, the application of the FTC to give
s

L

0 fl(x) dx = m(L) ≠ m(0) after rec-
ognizing that fl(x) = mÕ(x) (by interpreting fl(x) as the derivative of m(x) with respect to position
x, where m(x) is the function giving the mass of the piece of bar up to position x) is absolutely
valid but less straightforward compared to the sum conception. Thinking of it in the accumula-
tion model is probably easier or more productive4 (following Jones, 2015a). The Leibniz notation
for the di�erentiation ( d

dx
), which is typically used in physics, fits in a very natural way with the

adding-up-pieces interpretation. If fl(x) = dm

dx
is the local linear density at position x along the bar,

s
L

0 fl(x) dx =
s

L

0
dm

dx
dx =

s
L

0 dm = �m. The total mass of the bar is obtained by adding up the in-
finitesimal mass contributions dm = fl dx along the entire length of the bar from 0 to L. A pragmatic
use of the “di�erential” is made within this approach, which is typically used in physics, as pointed
out by some instructors.

In the development process of this new item, we also considered providing students with an explicit
analytical expression of the function, giving the value of the linear density along the bar, and asking
them to find the total mass of the bar. However, we ultimately decided to place the focus entirely on
the conceptual part, with the idea to address calculation aspects in another new separate pair of ques-
tions. Giving a Uhden’s model-based account, in this item the emphasis can be given to the so-called
“interpretation phase”: moving from the mathematical formal language to the underlying physical
interpretation. In particular, the question is strongly influenced by Jones’s studies about the meaning
students give to the di�erent parts in the symbolic template of the integral. Here, the question focuses
on the part corresponding to the product of the integrand function and the di�erential (fl(x) dx) and
the entire expression

s
L

0 fl(x) dx.
As the paired mathematical item, the following question was developed:

Item Sum M. Consider a positive (real-valued) function f(x) defined on R and the expressions 2
0 f(x) dx.

What do f(x) dx and the whole expression
s 2

0 f(x) dx respectively represent (geometrically)?

The solution is that f(x) dx geometrically represents the area of the infinitesimal region between the
graph of f(x) and the x-axis, with a base between x and x+dx, while the whole expression

s 2
0 f(x) dx

represents the area enclosed by the graph of f(x), the x-axis, x = 0, and x = 2. Again, the two steps
of the multiplicatively based summation are separately highlighted:

1. (multiplicative step) f(x) dx corresponds to the area of the infinitesimal “representative rectan-
gle” with basis dx and height f(x).

2. (summation or accumulation) by adding up the infinitesimal area contributions in the interval
from x = 0 to x = 2,

s 2
0 f(x) dx gives the area under the curve in the considered interval.

Since the considered function is assumed to be positive, there are no sign issues in the geometrical
(graphical) interpretation above.

In summary, this newly developed pair of items aims to work on the fundamental conceptualization
of the definite integral as the sum of infinitesimal contributions multiplicatively obtained. The two
steps pointed out by Jones (2015a, 2015b) are separately addressed: first, the multiplicative step in
which the representative infinitesimal contribution is obtained, and then the accumulation of such
contributions over the integration domain. For the item in the context of mathematics, the conceptu-
alization of the definite integral as the area under the curve is activated too.

4Even the area conceptualization may not be that e ective. Moreover, the idea that the area under the velocity graph
represents displacement may already be assimilated by the students, whereas here, the area under the density-position
graph is not expected to be previously known.
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Chapter 4. Development of new or modified items

4.4 New item pair for the conceptualization of the definite integral

as a sum

As shown in the theoretical framework (Chapter 1), several contributions from the literature in
mathematics and physics education stress the relevance of the adding up pieces (or multiplicatively
based summation) conceptualization of the definite integral for its applications, in physics and not
only. None of the items in the original test explicitly addresses this crucial aspect, at the heart of
meaning of the integral. The reason for this was that the original test was constrained to topics in
kinematics, with the aim of avoiding more advanced topics that could be too unfamiliar to students at
this point in the course. However, adding up pieces soon becomes important in the Physics 1 course,
proving to be a crucial tool to conceptualize ideas in rigid body description and dynamics (e.g. mass
of an extended object; moment of inertia) and, later on in the course or in Physics 2, electricity and
magnetism (e.g. fields generated by extended objects; flux). The interviewed instructors highlighted
this important conceptual aspect of integration. In line with this evidence, and based on Jones’s
research that further supports the importance of the Riemann sum conceptualization, we decided to
conceive a new item pair in order to try and activate the idea of the definite integral as the sum of
infinitesimal contributions multiplicatively obtained.

The discussion about the physical context in which to frame the Riemann sum item was an ample
part of the item design work. In principle, one could embed the question in the context of kinematics,
by considering again the integral of velocity over time. In symbols,

s
t
ú

0 v(t) dt. It is possible to think
of this integral expression within the adding-up-pieces conceptualization (with v(t) dt the infinitesimal
displacement from t to t + dt and the entire expression giving the total displacement over the time
interval from 0 to t*). However, in this case, the anti-derivative conceptualization (e.g. involving the
Fundamental Theorem of Calculus,

s
tú
0 v(t) dt = s(tú)≠s(0)) is typically quite strongly assimilated by

the students to get to the physical interpretation of total displacement. Instead, we wanted to avoid
students relying too much on memorized results and bring out the e ectiveness of the adding-up-pieces
conceptualization.

We considered di erent possible contexts relevant for introductory physics courses. For example,
the integral of power over time (or the integral of force over displacement2) to give work was considered.
A question about the moment of inertia of a rigid body or in the context of electrostatics could involve
concepts that are unfamiliar to students at the beginning of their first physics course at the university.
In the end, we converged on linear density, to be integrated over the length of a bar to give its total
mass. In many Physics 1 courses, the integral of the density over the volume of a body constitutes the
first example of the use of integrals as Riemann sums, introduced as a generalization of discrete sums
used for material point systems. Although students are unlikely to have used nonuniform densities
and integration to calculate masses in high school, they should be at least minimally familiar with the
concepts of mass and density to reason qualitatively on the item.3 In light of these considerations, the
following open-ended question (named “Sum P”) was proposed:

Item Sum P. The linear density of a bar of length L is given as a function of the distance x from
one end of the bar by fl(x). Consider the expression:

s
L

0 fl(x) dx.
What do fl(x) dx and the whole expression

s
L

0 fl(x) dx respectively represent (physically)?

The solution is that fl(x) dx represents the infinitesimal mass contribution from x to x + dx along
the bar, while the whole expression

s
L

0 fl(x) dx represents the total mass of the bar. Such an item is
somehow meant to highlight the two steps of the multiplicatively based summation as pointed out by
Jones (2015 a,b):

1. (multiplicative step) first of all, fl(x) dx entails the product of the (local) linear density at position
x and the infinitesimal length dx, thus giving the infinitesimal mass contribution present in the

2In this case, the dot product of force and displacement would be entailed. However, for the TCV-MP, it is preferred
to keep calculus (in this case integration) separate from the vectors

3Similarly to the concepts of kinematics, the chosen physics topic is connected to resources that students should
already have.
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Derivative. Meanings in filling containers 
Miguel Díaz Chávez. Colegio San Patricio. mdiaz3010@gmail.com 

Keywords: up to five keywords divided by commas, used dot at the end. 
INTRODUCCTION 
Derivative is fundamental concept in mathematics since facilitates the construction and 
understanding of concepts such as the tangent line and in other disciplines allows 
modeling and studying phenomena related to the rate of change. Its importance is such 
that a large space is dedicated to it in the calculus curriculum, especially the modeling, 
like Gay & Jones (2008) they say: We recognize that experience modeling has 
relevance in the sense of participation and control in solution processes. Modeling 
requires understanding the meaning of concept, its interpretations, use of some 
derivation techniques and solution of simple differential equations. The didactic 
proposal that we present finds one of its rationales there, in this case the filling of 
containers. We begin analysis in simple familiar containers where it is possible to 
imagine the solution using purely intuition and some qualitative elements; After the 
analysis focuses on containers more complex whose design requires to build non-
routine functions like functions defined by pieces, where they show relationship 
between meanings and interpretations of the derivative, like the rate of change and its 
definition, which as Leinhardt, et.al. (1990, pp. 1-64) points out: is not at all easy since 
it requires generating new parts that are not given, in addition to the fact that the 
representation of mathematical relationships using variables is a powerful but difficult 
process for students to learn (Kieren, 1992, pp. 390-419).  
THE EXPERIMENT 
Filling two vertical cylinders with different spokes 

Figure 1 
The volume of container is: 

𝑉(ℎ) = &
𝜋𝑅!"ℎ					𝑠𝑖	0 ≤ ℎ ≤ 𝐻!
𝜋𝑅""ℎ						𝑠𝑖	𝐻! < ℎ ≤ 𝐻

 

Using the chain rule, we get: 

#$
#%
= 𝐺 = 1

𝜋𝑅!"
#&
#%

𝜋𝑅""
#&
#%

	y									 #&
#%
= 1

'
()!"

	𝑠𝑖	0 ≤ ℎ ≤ 𝐻!
'
()""

	𝑠𝑖	𝐻! < ℎ ≤ 𝐻

181

mailto:mdiaz3010@gmail.com


Its graph is: 

Figure 2 
Solving the differential equation, we have that the height function is given by: 
	

ℎ(𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝐺
𝜋𝑅!"

𝑡 + 𝐶!					𝑠𝑖	0 ≤ 𝑡 ≤ 𝑇!

𝐺
𝜋𝑅""

𝑡 + 𝐶"						𝑠𝑖	𝑇! < 𝑡 ≤ 𝑇

Where 𝑇! and   T are the times, it takes for the lower cylinder and the complete container 
to fill respectively. Since h(0)=0, then 𝐶! = 0. Also, as ℎ(𝑇!) = 𝐻! then 𝑇! =

()!"*!
'

  , 

we get 𝐶" = 𝐻! ;1 −
)!"

)""
>. Substituting we get the expression:

	

ℎ(𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝐺
𝜋𝑅!"

𝑡																																				𝑠𝑖	0 ≤ 𝑡 ≤
𝜋𝑅!"𝐻!
𝐺

𝐺
𝜋𝑅""

𝑡 + 𝐻! ?1 −
𝑅!"

𝑅""
@ 						𝑠𝑖	

𝜋𝑅!"𝐻!
𝐺

< 𝑡 ≤ 𝑇

To calculate the total filling time, it’s enough done h(T)=H in the last expression and 
we get:  

𝑇 =
𝜋
𝐺
(𝐻𝑅"" + 𝐻!(𝑅!" − 𝑅"")) 

We must say that this proposal addresses the general problem of filling container. 
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The role of calculus in advanced physics courses for teachers – 

instructors’ views 
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INTRODUCTION 

It is generally agreed that “doing physics” is impossible without a sound calculus 

background: the fundamental relations governing the dynamics of physical processes 

are differential equations. Part of the challenge of learning and teaching physics is its 

relation to mathematics. At the undergraduate level, Hitier and González‐Martín (2022) 

have highlighted how the (inconsistent) use of derivatives in calculus and mechanics 

courses, taken simultaneously, leads to student difficulties. More generally, Biza et al. 

(2022) highlighted the different roles that calculus courses play for physics and 

engineering degree programs. Before choosing their specialization, however, students 

usually learn physics by interacting with schoolteachers.  Naturally, a physics teacher 

should be proficient in both mathematics and physics (Shulman, 1986). Therefore, 

physics teacher training draws on both disciplines (Pospiech et al., 2019), to varying 

degree. For example, Eylon et al. (2010) studied how the instructor of a quantum 

mechanics course for teachers reduced the course’s mathematical load, focusing on 

developing a qualitative “sense of understanding” of quantum mechanical principles. 

The last example highlights not only the different roles that mathematics plays in 

teacher training, but also the relevant considerations that an instructor employs when 

teaching. 

METHODOLOGY 

There are several opportunities in Israel for in-service physics teacher professional 

development: few-hour workshops, professional learning communities, and MSc/PhD 

degrees in science education. The Rothschild-Weizmann (RW) Program for 

Excellence in Science Teaching at the Weizmann Institute of Science is an MSc 

program that combines courses about pedagogy as well as discipline-specific advanced 

content courses. The program aims to enhance teachers’ confidence and motivation by 

providing opportunities to advance their knowledge and participate in professional 

development activities. In the physics branch of the program, prior to the beginning of 

their first semester, the teachers attend an intense two-day workshop focusing on 

differential and integral calculus. The workshop instructor continues to teach a 

mathematics course during the first semester. Evidently, the RW program aims for its 

graduates to be in command of calculus and understand its relevance for physics. The 

research question we set to study therefore is: What do the instructors of the RW 

program wish to convey to teachers about the role of calculus in physics, and what 

considerations affect their teaching? 

The study will involve interviews with the current physics instructors of the program. 
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PRELIMINARY RESULTS AND OUTLOOK 

So far we have interviewed three instructors (note, the mathematics instructor was 

unavailable before submission). Our preliminary results indicate that several profiles 

emerge. One wishing to convey a coherent picture of physics based on differential 

equations, contrary to the segmented secondary school curriculum, 

“I wanted to reach Maxwell’s equations so they (the teachers) see how all of these…things, 

that in school are completely separate…how the entire picture looks.” 

A second profile emphasizes physical reasoning over equations, because qualitative 

sense-making has a better chance of reaching the classroom: 

“I stop myself from dealing with the mathematical formalism…I find it important that they 

demonstrate…that conceptual understanding…because it has a chance of passing on to 

their students. The formulas have no chance.” 

A third profile values both physics and mathematics knowledge, choosing subjects 

according to the teachers’ level of mathematics:  

“There is so much to know… there’s a lot of value in that… (I learned to) avoid things that 

are too abstract or mathematical.” 

The instructors convey to the teachers different roles of calculus in physics, rooted in 

their commitment to the discipline, to science in general, or to students, exposing a gap 

between the program’s goal and the way the instructors employ it in their teaching. 
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INTRODUCTION 

Generative Artificial Intelligence (Gen AI) is transforming the landscape of students 

who are learning calculus through a traditional lens. In 2024, the National Council of 

Teachers of Mathematics (NCTM) urged mathematics teachers to implement AI in 

classroom instruction in a manner such that students engage with AI tools without 

replacing human interaction. An example of a Gen AI tool includes ChatGPT, an AI 

that can be utilized as a teaching assistant to aid students in personalized learning, 

which includes offering feedback on assessments (Lo, 2022). In the course entitled 

Calculus I for Science and Engineering, Dr Abby Williams, Assistant Teaching 

Professor of Mathematics at Northeastern University, created an AI Math Bot which 

she named Ada to support students’ learning of calculus beyond the classroom. Ada 

is a customized version of ChatGPT that is tailored to students’ personalized learning 

of calculus content by using examples from a calculus textbook that is built into it. In 

addition, Ada generates practice examinations that mock past examination papers and 

provide feedback on students’ work.  

To explore the potential impact of Ada in a calculus classroom, Wenger’s (1998) 

communities of practice lens is applied as the overarching theoretical framework. 

Wenger (1998) describes the characteristics of a community of practice as people 

coming together in sharing a common goal. The practice in this study involves 

students enrolled in Calculus for Business who are engaging in practice with Gen AI. 

In Wenger’s (1998) work, he refers to an artifact as a tool that can be used as a 

vehicle to solve problems in the practice. In this instance, Gen AI tools such as Ada 

are  examples of artifacts that help calculus students understand and solve calculus 

applications. Narrative inquiry (Clandinin, 2022) is the methodological approach 

employed as it enables insight into students’ written reflections on using Ada as a 

teaching assistant. The guiding research questions for this study include:  

1. How does Ada aid students’ learning of calculus beyond the classroom?

2. How do calculus students benefit from using Ada as a teaching assistant?

3. What is the potential impact of students’ performance in calculus when

utilizing Ada as a teaching assistant?

METHODS 

Participants for this pilot study included first-year university students enrolled in a 

Calculus for Business module. These students are non-mathematics specialists and 

are majoring in fields such as social sciences, humanities, and business. The design of 

the activity included a worksheet that has a set of seven calculus problems. This was 

185

mailto:m.meangru@northeastern.edu


used as a practice examination to prepare the students for their final examination. 

During the activity, calculus students worked on problems individually, and the 

instructor reviewed each problem with the entire class. The students uploaded their 

work on each problem to CANVAS. In addition, the students were encouraged to 

write a reflection of Ada’s responses and the use of Ada as a teaching assistant. Data 

collection includes students’ written work, both instructor and Ada solutions, and 

students’ optional reflections. Data analysis entails reviewing students’ reflections 

and written work along with Ada and instructor solutions.  

DISCUSSION 

In this pilot study, calculus students voluntarily shared their work on CANVAS to 

show how they solved the seven-question final review worksheet. The notable 

difference came from questions regarding integration by parts and compound interest 

questions. Calculus students followed the instructor's approach of setting up a box to 

determine the variables ‘u’,’du’,‘v’,’dv’. In contrast, Ada just mentions that step # 1 

is integration by parts 

On questions involving compound interest, Ada had the correct step-by-step approach 

in solving compound interest questions; however, Ada computed the wrong values. 

This was a teaching moment, however, wherein the instructor could ask students to 

check Ada’s computations to see if they were correct by using a calculator. While the 

data collection came from a small sample, individual  reflection pieces by each 

student would have been useful in understanding how Ada could be fully utilised as 

an AI teaching assistant with students learning calculus. I hypothesise that this pilot 

study will contribute to practitioners in the field in understanding how Gen AI could 

be a useful AI teaching assistant tool for students to learn calculus.  
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